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SA.1 (a) Solve the following minimization problem by using a graphical method:

minimize f(x) = 2x1 + x2
2 − 2

subject to: c1(x) = −(x1 + 3)2 − x2
2 + 9 ≥ 0

c2(x) = −3x1 − 2x2 − 6 ≥ 0

Note: An explicit numerical solution is required.

(b) Indicate the feasible region.

(c) Is the optimum point constrained?

Solution

(a) and (b) If we let
f(x) = 2x1 + x2

2 − 2 = c

with c = −2, −6, −10, and −14, a family of contours, which are parabolas, can be constructed
for the objective function as shown in Fig. SA1. On the other hand, setting

c1(x) = 0 and c2(x) = 0

yields circle
(x1 + 3)2 + x2

2 = 9

and straight line
x2 = − 3

2x1 − 3

respectively. Together these equations define the feasible region shown in Fig. SA.1. By inspec-
tion, we observe that the solution of the constrained problem is

x∗ = [−6 0]T

at which
f(x∗) = −14

(c) Since the solution is on the boundary of the feasible region, it is constrained.

SA.2 Repeat SA.1(a) to (c) for the problem

minimize f(x) = x2
1 − 4x1 + x2 + 4

subject to: c1(x) = −2x1 − 3x2 + 12 ≥ 0

c2(x) = 1 − (x1 − 6)2

4
− x2

2

9
≥ 0

Note: Obtain an accurate solution by using MATLAB.
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Solution

(a) and (b) The objective function can be expressed as

f(x) = (x1 − 2)2 + x2

If we let
f(x) = (x1 − 2)2 + x2 = c

with c = −1, 1, 3, and 5, a family of contours, which are parabolas, can be constructed for the
objective function as shown in Fig. SA.2. On the other hand, setting c1(x) = 0 and c2(x) = 0
yields straight line

x2 = −2
3
x1 + 4

and ellipse
(x1 − 6)2

22
+

x2
2

32
= 1

respectively. Together these equations define the feasible region shown in Fig. SA.2. By in-
spection, we observe that the solution point is achieved when the intersection points between a
function contour curve and the circle defined by c2(x) = 0 converge to a single point.

Since these two curves are represented by

(x1 − 2)2 + x2 = c

and
(x1 − 6)2

22
+

x2
2

32
= 1
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we can eliminate x2 in the second equation by using the first equation to obtain the equation

4x4
1 − 32x3

1 + (105 − 8c)x2
1 + (32c − 236)x1 + (352 + 4c2 − 32c) = 0

As can be seen from Fig. SA.2, the value of c = c∗ that corresponds to the solution point lies
between 3 and 5. A bisection method to identify this value of c∗ is as follows:

Consider the interval [cl, cu] with cl = 3 and cu = 5. We take the value of c in the above equation
to be c = (cl+cu)/2 and compute the four roots of the equation. Since the number of intersection
points is at most two, there are at most two real roots for the equation. If with the above value of
c the equation has two distinct real roots, then this c is greater than the optimum c∗ and we set
cu = c. Otherwise, the equation has no real roots and the value of c is smaller than c∗. In this
case, we set cl = c. The above steps are repeated until the length of interval [cl, cu] is less than a
prescribed tolerance ε. The value of c∗ can then be taken as c∗ = (cl + cu)/2.

The solution can be obtained to within a tolerance ε = 10−12 by running MATLAB program
progSA2.m.1 By running progSA2.m the solution was found to be c∗ = 3.4706, x∗ =
[4.1150 − 1.0027]T .

(c) Since the solution is on the boundary of the feasible region, it is constrained.

SA.3 (a) An n× n symmetric matrix A has positive as well as negative components in its diagonal. Show
that it is an indefinite matrix.

(b) Show that the diagonal of a positive semidefinite matrix A cannot have negative components.
Likewise, show that if A is negative semidefinite, then its diagonal cannot have positive compo-
nents.

(c) If the diagonal components of A are nonnegative, is it necessarily positive semidefinite?

1The MATLAB programs used in these solutions can be found in a PDF file immediately after this PDF file.
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Solution

(a) Suppose that the ith and jth diagonal components of A, aii and ajj , are positive and negative,
respectively. If ei is the ith column of the n × n identity matrix, then

eT
i Aei = aii > 0

Hence, by definition (see Appendix A.6), A cannot be negative semidefinite. Similarly, if ej is
the jth column of the n × n identity matrix, then

eT
j Aej = ajj < 0

and hence A cannot be positive semidefinite. Therefore, A is an indefinite matrix.

(b) We prove the statements in part (b) by contradiction. If A is positive semidefinite and has a
negative diagonal component ajj , then

eT
j Aej = ajj < 0

which contradicts the fact that A is positive semidefinite (see Appendix A.6). Similarly, if A is
negative semidefinite and has a positive diagonal component aii, then have

eT
i Aei = aii > 0

which contradicts the fact that A is negative semidefinite (see Appendix A.6). These contradic-
tions show that the statements in part (b) are true.

(c) The nonnegativeness of the diagonal components of a matrix cannot guarantee the positive semidef-
initeness of the matrix in general. For example,

A =
[
1 3
3 2

]

has positive diagonal components but it is not positive semidefinite because its principal minors,
i.e., 1, 2, and −7, are not all nonnegative.

SA.4 An optimization algorithm was used to solve the problem

minimize f(x) = x2
1 + 2x1x2 + 2x1 + 3x4

2

and it converged to the solution xa = [−1.6503 0.6503]T .

(a) Classify the Hessian of f(x) as positive definite, positive semidefinite, etc.

(b) Determine whether xa is a minimizer, maximizer, or saddle point.

Solution

(a) The Hessian of the function can be obtained as

H(x) =
[
2 2
2 36x2

2

]

The principal minors of H(x) are 2, 36x2
2, and 72x2

2 − 4 whereas the principal minors of −H(x)
are −2, −36x2

2, and 72x2
2−4. Hence H(x) is positive definite, positive semidefinite, or indefinite

if and only if 72x2
2 − 4 > 0, = 0, or < 0, respectively. By setting 72x2

2 − 4 = 0, we obtain
x1 = ±1/3

√
2. Therefore, we conclude that

(i) if x2 < −1
/
(3
√

2) or x2 > 1
/
(3
√

2), then the leading principal minors are all positive and
H(x) is positive definite;

(ii) if x2 = ±1/(3
√

2), then the principal minors are nonnegative and H(x) is positive semidef-
inite;
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(iii) and if −1/(3
√

2) < x2 < 1/(3
√

2), then both H(x) and −H(x) have positive and negative
principal minors and H(x) is indefinite.

(b) The gradient of the objective function is given by

g(x) =
[
2(x1 + x2 + 1)

12x3
2 + 2x1

]

At xa = [−1.6503 0.6503]T , we have

g(xa) =
[

0
−5.3489

]
× 10−4 and H(xa) =

[
2 2
2 15.2259

]

Since g(xa) ≈ 0 and H(xa) is positive definite, it follows that xa is a minimizer.

SA.5 (a) Use MATLAB to plot

f(x) = 0.6x4
2 + 5x2

1 − 7x2
2 + sin(x1x2) − 5x2

over the region −π ≤ x1, x2 ≤ π.2

(b) Use MATLAB to generate a contour plot of f(x) over the same region as in (a). To facilitate the
addition of a line search to the contour plot in part (d), use MATLAB command hold on to
hold successive plots.

(c) Compute the gradient of f(x), and prepare MATLAB function files to evaluate f(x) and its
gradient.

(d) Use Fletcher’s inexact line search algorithm to update point x0 along search direction d0 by
solving the problem

minimize
α≥0

f(x0 + αd0)

where

x0 =
[−π
−π

]
, d0 =

[
1.00
1.01

]
This can be done by using the following algorithm:

1. Record the numerical values of α∗ obtained.
2. Record the updated point x1 = x0 + α∗d0.

3. Evaluate f(x1) and compare it with f(x0).
4. Plot the line search result on the contour plot generated in part (b).
5. Plot f(x0+αd0) as a function of α over the interval [0, 4.8332]. Based on the plot, comment

on the precision of Fletcher’s inexact line search.

(e) Repeat part (d) for

x0 =
[−π
−π

]
, d0 =

[
1.0
0.85

]

The interval of α for plotting f(x0 + αd0) in this case is [0, 5.7120].

Solution

(a) Using MATLAB program progSA5a.m, the plot of Fig. SA.3 can be obtained.

(b) Using MATLAB program progSA5b.m, the plot of Fig. SA.4 can be obtained.

(c) The gradient of f(x) is given by

g(x) =
[

10x1 + x2 cos(x1x2)
2.4x3

2 − 14x2 + x1 cos(x1x2) − 5

]

Functions f(x) and g(x) can be evaluated by using MATLAB programs progSA5c1.m and
progSA5c2.m, respectively.

2A MATLAB command for plotting the surface of a two-variable function is mesh.
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(d) Inexact line search (Algorithm 4.6) can be carried out by using MATLAB programinex lsearch.m,
which requires four input parameters, namely, point x0 to start the search, vector d0 as the search
direction, the function name for the objective function, and the function name for the gradient.
For the present problem, the MATLAB commands

x0=[-pi -pi]’
d0=[1 1.01]’
alpha=inex_lsearch(x0,d0,’progSA5c1’,’progSA5c2’)

yield alpha = 5.1316. Hence

x1 = x0 + αd0 =
[
1.9900
2.0413

]
and, therefore,

f(x0) = 53.9839, f(x1) = −9.9527

Using the MATLAB commands

x1 = x0 + alpha*d0;
plot([x0(1) x1(1)], [x0(2) x1(2)]);
plot (x0(1), x0(2), ‘.’);
plot(x1(1), x1(2), ‘o’);
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the line-search update illustrated by the solid blue line in the contour plot of Fig. SA.5 can be
obtained. To examine the performance of the inexact line search, we can plot the variation of
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f(x) with respect to the line
x = x0 + αd0

(i.e., dashed blue line x0B in Fig. SA.5). From triangle x0AB, we compute the length x0B as

x0B =

√
(2π)2 +

(
2π

1.01

)2

= 8.8419

Hence the value of α corresponding to point B is given by

αmax =
8.8419
‖d0‖ =

8.8419√
1 + 1.012

= 6.0803

A plot of f(x0 + αd0) as a function of α over the interval [0, 6.0803] can be obtained as shown
in Fig. SA.6 by using MATLAB program progSA5d.m. Evidently, the inexact line search
algorithm obtained a fairly good value of α, i.e., α = 5.1316 (see × mark in Fig. SA.6).
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(e) Proceeding as in part (d) with d0 = [1 0.85]T , the MATLAB commands

x0=[-pi -pi]’;
d0=[1 0.85]’;
alpha=inex_lsearch(x0,d0,‘progSA5c1’,‘progSA5c2’);

yield α = 2.7852. Hence

x1 = x0 + αd0 =
[−0.3564
−0.7742

]
and

f(x0) = 53.9839 and f(x1) = 0.7985

The line search is illustrated by the dashed red line in Fig SA.5. The interval for α in this case
is [0, 6.2832]. The plot of f(x0 + αd0) was produced using MATLAB program progSA5e.m
and is shown in Fig. SA.7. From Fig. SA.7, we see again that the inexact line search provides a

0 1 2 3 4 5 6
−20

−10

0

10

20

30

40

50

60

α

f(
x 0+

αd
0)

Figure SA.7

very good value for α (see × mark).

SA.6 Consider the minimization problem

minimize f(x) = 2x2
1 + 0.5x2

2 − x1x2 + 4x1 − x2 + 2

(a) Find a point satisfying the first-order necessary conditions for a minimum.

(b) Show that this point is the global minimizer.

(c) What is the rate of convergence of the steepest-descent method for this problem?

(d) Starting at x0 = [0 0]T , how many steepest-descent iterations would it take (at most) to reduce
the function value to 10−12?

Solution

(a) The objective function can be expressed in the standard form as

f(x) =
1
2
xT

[
4 −1
−1 1

]
x + xT

[
4
−1

]
+ 2

Hence the gradient of f(x) is given by

g(x) =
[

4 −1
−1 1

]
x +

[
4
−1

]

By setting g(x) to zero and solving g(x) = 0 for x, the unique stationary point x∗ = [−1 0]T

can be obtained.
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(b) From (a), we obtain the Hessian matrix of f(x) as

H =
[

4 −1
−1 1

]

Since the leading principal minors of H, i.e., 4 and 3, are positive, H is positive definite and f(x)
is a strictly globally convex function; hence x∗ is the unique global minimizer of f(x).

(c) The two eigenvalues of H are found to be 0.6972 and 4.3028. Thus r = 0.6972/4.3028 =
0.1620, and the convergence ratio is given by

β =
(1 − r)2

(1 + r)2
= 0.52

(d) It follows from Eq. (5.8) that

|f(xk) − f(x∗)| ≤ βk|f(x0) − f(x∗)|

From part (a),
x∗ = [−1 0]T and f(x∗) = 0

Hence
|f(xk)| ≤ βk|f(x0)|

Consequently, if
βk|f(x0)| ≤ 10−12 (SA.1)

f(x0) = 2, and log10 β = −0.2840, then taking the logarithm of both sides of Eq. (SA.1) gives

k ≥ (12 + log10 2)
0.284

= 43.314

Therefore, it would take the steepest-descent algorithm at most 44 iterations to reduce the objec-
tive function to 10−12.

SA.7 Solve the minimization problem

minimize f(x) = 0.5x2
1 + 2x2

2 − x1x2 − x1 + 4x2

by using the Newton method assuming that x0 = [0 0]T .

Solution

The objective function can be expressed

f(x) =
1
2
xT

[
1 −1
−1 4

]
x + xT

[−1
4

]

Therefore, the gradient and Hessian are given by

g(x) =
[

1 −1
−1 4

]
x +

[−1
4

]
and H =

[
1 −1
−1 4

]

respectively. At x0 = [0 0]T , g(x0) = [−1 4]T and hence the search direction is given by

d0 = −H−1g(x0) = −
[

1 −1
−1 4

]−1 [−1
4

]
=

[
0
−1

]

Since the objective function is quadratic, the line search can be performed by finding the value of α
that minimizes

f(x0 + αd0) =
dT

0 Hd0

2
α2 + (gT

0 d0)α + const
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This is given by

α0 =
−gT

0 d0

dT
0 Hd0

=
gT

0 H−1g0

gT
0 H−1g0

= 1

and hence

x1 = x0 + α0d0 =
[
0
0

]
+

[
0
−1

]
=

[
0
−1

]

At x1, we have g(x1) = 0 and hence x1 is a stationary point. Since the Hessian matrix H is constant
and positive definite, point x1 is the unique global minimizer of the objective function.

SA.8 (a) Find the global minimizer of the objective function

f(x) = (x1 − 4x2)4 + 12(x3 − x4)4 + 3(x2 − 10x3)2 + 55(x1 − 2x4)2

by using the fact that each term in the objective function is nonnegative.

(b) Solve the problem in part (a) using the steepest-descent method with ε = 10−6 and try the initial
points [1 −1 − 1 1]T and [2 10 −15 17]T .

(c) Solve the problem in part (a) using the Gauss-Newton method with the same termination tolerance
and initial points as in part (b).

Solution

(a) We note that the objective function

f(x) = (x1 − 4x2)4 + 12(x3 − x4)4 + 3(x2 − 10x3)2 + 55(x1 − 2x4)2

always assumes nonnegative values and hence the least value it can assume is zero. This can
happen if and only if the four terms on the right-hand side are all zero, i.e.,

x1 − 4x2 = 0, x3 − x4 = 0
x2 − 10x3 = 0, x1 − 2x4 = 0

The above system of linear equations has the unique solution x∗ = [0 0 0 0]T as can be easily
shown. Therefore, the global minimizer of f(x) is identified as x∗ = 0.

(b) The gradient of the objective function f(x) can be computed as

g(x) =

⎡
⎢⎢⎣

4(x1 − 4x2)3 + 110(x1 − 2x4)
−16(x1 − 4x2)3 + 6(x2 − 10x3)
48(x3 − x4)3 − 60(x2 − 10x3)
−48(x3 − x4)3 − 220(x1 − 2x4)

⎤
⎥⎥⎦

With x0 = [1 −1 −1 1]T and ε = 10−6, it took the steepest-descent algorithm 36,686 iterations
to converge to the solution

x∗ = [0.04841813 0.01704776 0.00170602 0.02420804]T

With x0 = [2 10 −15 17]T , it took the steepest-descent algorithm 37,276 iterations to converge
to the solution

x∗ = [0.04813224 0.01694710 0.00169595 0.02406512]T

The above solutions were obtained by running MATLAB program progSA8b.mwhich requires
three MATLAB functions, namely, progSA8b1.m, progSA8b2.m, and inex
lsearch.m.

(c) The objective function can be expressed as

f(x) = f2
1 (x) + f2

2 (x) + f2
3 (x) + f2

4 (x)
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where

f1(x) = (x1 − 4x2)2, f2(x) =
√

12(x3 − x4)2

f3(x) =
√

3(x2 − 10x3), f4(x) =
√

55(x1 − 2x4)

The Jacobian is found to be

J(x) =

⎡
⎢⎢⎣

2(x1 − 4x2) −8(x1 − 4x2) 0 0
0 0 2

√
12(x3 − x4) −2

√
12(x3 − x4)

0
√

3 −10
√

3 0√
55 0 0 −2

√
55

⎤
⎥⎥⎦

With x0 = [1 −1 −1 1]T and ε = 10−6, it took the Gauss-Newton method 13 iterations to
converge to the solution

x∗ =

⎡
⎢⎢⎣

0.81773862
−0.05457502
−0.00545750

0.40886931

⎤
⎥⎥⎦ × 10−6

With x0 = [2 10 −15 17]T and ε = 10−6, it took the Gauss-Newton method 15 iterations to
converge to the solution

x∗ =

⎡
⎢⎢⎣

0.55449372
0.21471714
0.02147171
0.27724686

⎤
⎥⎥⎦ × 10−6

The above solutions were obtained by running MATLAB program progSA8c.mwhich requires
four MATLAB functions, namely, progSA8b1.m, progSA8c1.m, progSA8c2.m, and
inex lsearch.m.

SA.9 Consider an underdetermined system of linear equations

Ax = b (SA.2)

where A ∈ Rm×n and b ∈ Rm×1 with m < n. A solution x of Eq. (SA.2) is sought such that its
L1-norm, i.e.,

‖x‖1 =
n∑

i=1

|xi|

is minimized. Formulate the above problem as a constrained minimized problem and convert it into a
unconstrained problem.

Solution

The optimization problem can be formulated as

minimize f(x) = ‖x‖1 (SA.3a)

subject to: Ax = b (SA.3b)

In order to convert the problem in (SA.3) into an unconstrained problem, we apply the singular-value
decomposition (SVD) of matrix A, namely

A = UΣVT (SA.4)

(see Eq. (A.34) of Appendix A.9). Let the rank of A be r. It is known that all the solutions of (SA.3b)
are characterized by

x = A+b + Vrφ (SA.5)

where A+ denotes the Moore-Penrose pseudo-inverse of A (see Appendix A.9) and Vr = [vr+1 vr+2 · · ·vn]
is a matrix of dimension n × (n − r) composed of the last n − r columns of matrix V obtained in
Eq. (SA.4), and φ ∈ R(n−r)×1 is an arbitrary (n − r)-dimensional vector (see Eq. (A.44)).

By using (SA.5), the constraint in (SA.3b) is eliminated and we obtain a unconstrained optimization
problem as

minimize φ∈Rn−r‖Vrφ + A+b‖1
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SA.10 The feasible region shown in Fig. SA.8 can be described by

R :

⎧⎨
⎩

x2 < 0.5x1 + 0.5
x2 < −0.5x1 + 0.5
x2 > 0

Find variable transformations x1 = T2(t1, t2) and x2 = T2(t1, t2) such that −∞ < t1, t2 < ∞
would describe the same feasible region.

10

0.5

-1 x1

x2

R

Figure SA.8

Solution

We note that the feasible region can be represented by

2x2 − 1 < x1 < −2x2 + 1
0 < x2 < 0.5

Hence for a fixed x2, a feasible value of x1 can be obtained as

x1 = (1 − 2x2) tanh(t1)

where −∞ < t1 < ∞ and x2 varies from 0 to 0.5. Furthermore, a variable x2 that assumes values in
the range 0 < x2 < 0.5 can be expressed as

x2 = 0.25[tanh(t2) + 1]

where −∞ < t2 < ∞. By combining the above two expressions, we obtain

x1 = {1 − 0.5[tanh(t2 + 1)]} tanh(t1)
x2 = 0.25[tanh(t2) + 1]

where −∞ < t1, t2 < ∞.

SA.11 Consider the problem

minimize f(x) = xT Qx + xT p
subject to: ‖x‖ ≤ β

where Q ∈ Rn×n is positive semidefinite and β is a small positive scalar.

(a) Derive the KKT conditions for the solution points of the problem.

(b) Use the KKT conditions obtained to develop a solution method.

Solution

(a) The Lagrangian associated with the problem under consideration is given by

L(x, μ) = xT Qx + xT p − μ(β2 − xT x)

from which the KKT conditions can be described as
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(i) β2 − xT x ≥ 0 (SA.6a)

(ii) 2Qx + p + 2μx = 0 (SA.6b)
(iii) μ(β2 − xT x) = 0 (SA.6c)
(iv) μ ≥ 0 (SA.6d)

(b) From Eq. (SA.6b), we obtain

x = −1
2
(Q + μI)−1p (SA.7)

Since Q is positive semidefinite, it can be expressed as Q = UΛUT where U is an orthogonal
matrix and Λ = diag{λ1, λ2, . . . , λn}. Hence (SA.7) can be written as

x = −1
2
U(Λ + μI)−1p̂ (SA.8)

where p̂ = UT p. With (SA.8), the constraint in (SA.6a) becomes

g(μ) ≡ ‖(Λ + μI)−1p̂‖ ≤ 2β (SA.9)

If we let p̂ = [p̂1 p̂2 . . . p̂n]T , then (SA.9) implies that

g(μ) =

[
n∑

i=1

p̂2
i

(λi + μ)2

]1/2

≤ 2β (SA.10)

From (SA.10) we see that g(μ) is a decreasing function with respect to μ. The above analysis
suggests a solution method as follows:

(i) If g(0) ≤ 2β, then μ∗ = 0 is the optimum Lagrange multiplier and the solution can be
obtained by using (SA.7) with μ = 0 as

x∗ = −1
2
Q−1p

(ii) If g(0) > 2β, then we can use a bisection method to identify a μ∗ > 0 such that g(μ∗) = 2β
and the solution in this case is given by

x∗ = −1
2
(Q + μ∗I)−1p

SA.12 Show that the constrained L1-norm minimization problem

minimize ‖x‖1

subject to: Ax = b

can be formulated as a linear programming problem. Data matrices A and b as well as variable vector
x are all real-valued.

Solution

If the components of x are assumed to be bounded, i.e.,

|xi| ≤ δi

then from the definition of the L1 norm

‖x‖1 =
n∑

i=1

|xi|

Hence it follows that

‖x‖1 ≤
n∑

i=1

δi
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Consequently, the L1-norm minimization problem can be expressed as

minimize
n∑

i=1

δi

subject to: |xi| ≤ δi

Ax = b

If we treat δi for i = 1, 2, . . . , n as auxiliary variables and let

x̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1

δ2

...
δn

x1

x2

...
xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
...
1
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

then the problem under consideration becomes

minimize cT x̃

subject to: |xi| ≤ δi for i = 1, 2, . . . , n

Ax = b

where the first set of constraints can be written as

Fx̃ ≥ 0

where

F =
[
In In

In −In

]
and In is the n × n identity matrix. Therefore, the L1-norm minimization problem is equivalent to

minimize cT x̃
Subject to: Fx̃ ≥ 0

Ax = b

which is an LP problem.

SA.13 Assuming that A = {aij} and B = {bij} are real symmetric matrices, show that

trace(AB) = trace(BA) =
n∑

i=1

n∑
j=1

aijbij

Solution

The (i, i)th element of AB is given by

(AB)i,i =
n∑

i=1

aijbji

Since B is symmetric, bji = bij and hence

(AB)i,i =
n∑

j=1

aijbji =
n∑

j=1

aijbij
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which leads to

trace(AB) =
n∑

i=1

(AB)i,i =
n∑

i=1

n∑
j=1

aijbij

Similarly, since A is symmetric, aji = aij and hence

trace(BA) =
n∑

i=1

(BA)i,i =
n∑

i=1

n∑
j=1

bijaji =
n∑

i=1

n∑
j=1

bijaij

SA.14 Show that the unconstrained optimization problem

minimize ‖Ax − b‖2
2 + μ‖x‖1 (SA.11)

where A ∈ Rm×n, b ∈ Rm×1, and μ > 0 can be reformulated as a QP problem.

Solution

If u = [u1 u2 · · · um]T and v = [v1 v2 · · · vn]T where

ui = max{xi, 0} and vi = max{−xi, 0}
then it follows that

u ≥ 0, v ≥ 0, and x = u − v

Moreover, it can be verified that

‖x‖1 =
n∑

i=1

|xi| = eT
nu + eT

nv

where en = [1 1 · · · 1]T . Consequently, the problem in (SA.11) is equivalent to

minimize ‖A(u− v) − b‖2
2 + μeT

nu + μeT
nv (SA.12)

subject to: u ≥ 0, v ≥ 0

It we let

w =
[
u
v

]
then we can write

‖A(u − v) − b‖2
2 = ‖[A − A]w − b‖2

2 = wT Bw + 2wT p + ‖b‖2
2

where

B =
[

AT A −AT A
−AT A AT A

]
, p =

[
AT b
−AT b

]
and the problem in Eq. (SA.12) becomes

minimize wT Bw + wT q

subject to: w ≥ 0

where q = μe2n + 2p, which is a QP problem.

SA.15 Show that the discrete QP problem

minimize xT Qx + xT q (SA.13)

subject to: xi ∈ {−1, 1,−3, 3} for i = 1, 2, . . . , n

can be reformulated as

minimize wT Q̂w + wT q̂ (SA.14)

subject to: wi ∈ {−1, 1} for i = 1, 2, . . . , 2n
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Solution

The discrete set {−1, 1, −3, 3} can be produced by the variable

xi = 2ui + vi (SA.15)

where ui and vi assume the values of −1 or 1.

Thus each variable xi in Problem (SA.13) can be replaced by the expression in Eq. (SA.15), which
involves two binary variables ui and vi. From Eq. (SA.15), we have

x = 2u + v = [2I I]
[
u
v

]
= [2I I]w

and the objective function in Eq. (SA.13) can be expressed as

xT Qx + xT q = wT

[
2I
I

]
Q[2I I]w + wT

[
2I
I

]
q = wT Q̂w + wT q̂

where

Q̂ =
[
4Q 2Q
2Q Q

]
, q̂ =

[
2q
q

]
, and w =

[
u
v

]
In effect, we have formulated the problem under consideration as a discrete QP problem in Eq.
(SA.14).


