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In machine dynamics the tool point frequency response functions (FRFs) are employed to predict the

stable machining conditions. In this paper, a combined analytical–experimental substructuring

procedure is proposed to determine the tool point FRFs for different holder–tool configurations. The

method employs the measured spindle-machine FRFs and analytical models of the tool and the holder

to predict the tool tip FRFs for different sets of tools and holders mounted on the machine spindle

without the need for repeated experimental measurements. Distributed joint interfaces are used

to couple the three-component model of the machine. The machine tool tip FRFs with different

tool–holder combinations are obtained assuming the clamping conditions at joint interfaces remain

unchanged. An experimental case study is provided to demonstrate the applicability of the proposed

method in dynamic modeling of machine tool.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Chatter has long been a problem in machining operations.
With trends for higher precision and reduced tolerances, solutions
to avoid chatter in machining have become increasingly im-
portant. A common tool to identify chatter free machining
conditions is the stability lobe diagram. A stability lobe diagram
is a plot that separates unstable combinations of axial depth of
cut, and spindle speed from the stable ones. Many studies have
been performed and several criteria have been developed to
generate stability lobe diagrams [1]. Knowledge of machine tool
frequency responses is a prim need in many developed criteria for
determining stable cutting conditions.

The tool tip frequency responses are obtained using experi-
mental measurements and are changed with individual combina-
tions of spindle, holder and tool configurations. Thus, there is a
demand for semi-analytical methods that can predict machine
tool dynamics using the minimum experimental measurements.
This has been the subject of considerable research in the past. The
simplest model for the machine tool treats the holder as a rigid
base that supports a flexible tool [2–5]. But for non-slender tools,
the dynamics of the spindle–holder has considerable effect on the
tool point response. Schmitz et al. [6,7] divided the machine tool
assembly into two separate substructures: overhang portion of
the tool that is modeled analytically and the rest of the assembly,
ll rights reserved.
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namely spindle–holder that is modeled experimentally. They
employed receptance coupling substructure analysis (RCSA) to
couple the dynamics of these two substructures using a lumped
joint interface model.

In many circumstances the only variable portion of a machine
center is the overhang portion of the tool; treatment mentioned in
[6] can eliminate the need for repeated experimental works in
these cases. Other researchers continued to improve this method
and attempted to remove its drawbacks such as the need to
measure rotational degrees of freedom (RDOF) at the joint
interface [8–10]. In a recent work, Ahmadi and Ahmadian [11]
modeled the tool dynamics considering the tool inserted shank
resting on a resilient support. The support, provided by the
spindle–holder, was represented by a damped-elastic foundation
capable of simulating the dominant translational and rotational
deformations of spindle over a wide frequency range. The support
receptance functions, measured using a set of mobility experi-
ments on spindle–holder assembly, were directly employed in the
analytical model to represent the support dynamic properties.
They modeled the joint interface between the tool and holder
using an elastic interface layer where the interface stiffness can be
defined as a variable function along the tool inserted shank
length. Introduction of this layer enables one to take into account
the variation in contact stiffness due to tool changes, interface
contact pressure distribution, etc.

Schmitz and Duncan [12] developed an improved three-
component model of the machine tool to extend RCSA method
for a wide variety of spindle–holder–tool combinations. They
separated the spindle–machine substructure into two parts:
1) the spindle and holder taper and (2) the remaining of the
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holder that was modeled analytically. Since the taper portion of
the holder does not change from holder-to-holder, this three
component model can predict the dynamics of the assembly for
new assembly of spindle–holder–tool. In this work a stepped
beam is employed to model the tapered section of the holder.
More recently Filiz et al. [13] proposed a new method that uses
the Timoshenko beam theory to model the complete holder–tool,
including the actual tapered geometry.

In this paper, a new three-component model is proposed that
can predict the tool dynamics without requiring any experimental
measurement on the tool and holder. The spindle-machine is
modeled experimentally by using the response model obtained
from impact testing. Then in order to find the dynamics of the
complete assembly, analytical models of the holder and tool are
coupled to the experimental model of the spindle-machine. A new
substructuring method is developed that couples machine tool
components throughout continuous elastic joint interfaces. The
interface stiffness is assumed to be a complex valued function to
include the joint interface damping effects. The interface stiffness
can be defined as a variable function along the continuous layer
joints. As the normal pressure between substructures is varying
along the joints, this enables the analyst to introduce the contact
stiffness in more detail and as a result, a more precise prediction
of the dynamics of the assembly can be obtained.

The remaining of the paper categorized as follows. The details
of the mathematical modeling of assembled machine are
proposed in Section 2. In Section 3 each component is considered
separately and its appropriate dynamic model is obtained. These
component models are assembled using the proposed thin
interface layers to predict the dynamics of a specific machine
center in Section 4 and the results are compared with those of
experimental measurements to validate the model. Section 5
provides some conclusions from the present research study.
2. Tool–holder on a complex impedance support

The aim is to predict the dynamics of tool by coupling
experimental response model of the spindle-machine and
analytical/finite element models of the tool and holder. This
coupling process occurs along continuous joint interfaces
between these components. In this section a new methodology
is developed to accomplish the task of coupling the three
components.

The problem of connecting a tool and/or the holder to a flexible
support with complex impedance using a continuous interface is
commonly encountered in the dynamic modeling of machine
tools. Consider the system of Fig. 1, comprised of a beam with
variable cross-sections partly resting on a flexible support via an
elastic interface layer with non-uniform stiffness properties. The
flexible support is provided by the spindle-machine, substructure
A, and substructure B resembles the tool and/or the holder. A
linear elastic behavior is assumed for the interface layer, which
Fig. 1. A non-uniform beam coupled to a flexible support using an elastic layer

interface.
has sufficient accuracy for small deformations [15]. The system
has non-uniform properties, i.e. the beam and the elastic interface
layer have varying geometric and stiffness properties, and thus in
general no closed-form solution can be found for the problem.

In contrast to the substructure A, component B is a simpler one
and its geometry and material properties are available with
sufficient accuracy and its dynamic model can be obtained
analytically. The modal model of substructure B is defined as
followings:
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where lB
i ,fB

i ðxÞ, i¼ 1, 2, . . ., n are squared natural frequencies and
mode shapes of component B. The number of modes that are
considered in the modal model, n, depends on the frequency
range of interest and the desired degree of model accuracy. Note
that the modal model of component B is represented in
unassembled state, i.e. it contains the rigid body modes. The
mode shapes are mass normalized and satisfy the following
orthogonality conditions:
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where mB(x) and EIB(x) are linear mass density and flexural
stiffness of component B.

On the other hand, the complex substructure A is comprised
of many parts and internal joints, and there is no enough
information about dynamic behavior of these parts to build a
reliable model to prediction its dynamic response. In this
study substructure A is regarded as a black box with known
input–output relations at few DOFs obtained from experimental
measurements. Such decomposition seems logical in modeling
machine tool dynamics. The tool and holder are geometrically
simple components and their properties are available. In contrast
the rest of the machine tool, namely spindle-machine substruc-
ture (all the parts and joints that exist between the holder and
ground such as bearings, casings, gear train and spindle) consists
of many parts and internal unknown joints. Thus, it is reasonable
to model the tool and/or holder analytically and then couple them
to the experimental model of spindle-machine substructure in
order to predict the dynamics of the whole structure.

In order to find the response of the system, each component is
considered separately and the adjacent structure contribution is
represented as distributed forces. In presence of harmonic
excitation at the tool tip the interface distributed forces are also
harmonic and proportional to the difference between the
displacements of the two components:

FAðxÞ ¼ KðxÞ½UBðxÞ�UAðxÞ�,

FBðxÞ ¼�FAðxÞ: ð3Þ

Here UA(x) and UB(x) are the deformed shapes of the components
A and B in frequency domain and K(x) is the interface stiffness
function. The deformed shapes are complex functions due to
non-proportional nature of damping in the spindle-machine
substructure and FA(x), and FB(x) are complex valued distributed
forces exerted on each component along the joint interface.

Deformations of the components can be determined if the
distributed forces acting on the components along the interface



Fig. 2. Differential force at the joint interface acting on the component A.
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are identified. First we consider the measured receptance matrix
[HA(o)], i.e. the input–output relations of substructure A at
selected points (i¼1, 2, y, m) located within the interface

½HAðoÞ� ¼
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The transfer functions of the substructure A are measured at
discrete points along the joint interface by impact testing. Fig. 2
shows these discrete points. The analysis of interface forces
specified in Eq. (3) requires the force–displacement relations at all
interface points. We define a continuous receptance function HA

i,x

at any point along the joint interface (the deflection of component
A along the interface as a function of x due to the unit harmonic
excitation at point i) by curve fitting the measured receptances.
The system under consideration is linear within the excitation
load and frequency range of interest, and Hi,x¼Hx,i. The
continuous receptance function can be approximated using a
power series as
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where the vector {x}¼[1 x y xm�1]T. Evaluating Eq. (6) at discrete
measurement points xi leads to
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The vector {Xi} equals the vector {x} evaluated at ith point. The
matrix [a] is obtained as

aðoÞ½ � ¼ HAðoÞ
h i

½XA��1, XA
h i

¼ fX1g fX2g � � � fXmg
� �

, ð8Þ

and as a result the receptance function HA
i,x is known. Next, we

turn our attention to the force–displacement relations in the joint
interface. Fig. 2 shows the differential force acting on the
component A at the joint interface. Deflection of point i as a
result of this differential force can be expressed as

dUA
i ¼HA

i, xdFA ¼HA
i, xKðxÞ½UBðxÞ�UAðxÞ�dx: ð9Þ

One may employ the superposition of the effects of all forces
acting on substructure A in order to determine the deformation in
point i, i.e.

UA
i ¼

Z x2

x1
HA

i, xKðxÞ½UBðxÞ�UAðxÞ�dx, i¼ 1, 2,. . ., m ð10Þ

The unknown deflection shapes UA(x) and UB(x) are approxi-
mated with the following series expressions:
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The displacement field of component A along the interface is
approximated by a polynomial of order m�1, consistent with the
earlier assumption used in Eq. (5). On the other hand, the mode
shapes of the component B, i.e. fB

j ðxÞ are available. Thus,
employing the expansion theorem, its displacement field at the
interface is approximated by the finite sum of its mode.
Introducing expansions defined in Eqs. (11) and (12) in Eq. (10),
one obtains

fXig
T
fag ¼

Z x2

x1
HA

i, xKðxÞ½ffB
g

T
fbg�fxgT fag�dx, i¼ 1, 2, . . ., m, ð13Þ

which in matrix form can be defined as

½XA�Tfag ¼
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Eq. (13) includes a frequency dependent integral that can be
simplified using the expression given in Eq. (6). Introducing Eqs.
(6) and (8) in Eq. (14) the governing equation of the component A

can be obtained as follows:
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Eq. (15) has an important computational advantage that is its
integrals are frequency independent and there is no need to
evaluate the integrals at each individual frequency of interest.
Eq. (15) consists of m equations with m+n unknowns therefore n

complementary equations are required to solve these equations.
In the followings these complementary equations are obtained
from the governing equations of the substructure B.

Substructure B is modeled as an Euler–Bernoulli beam theory.
Later in the next section it is shown that this simple model is
adequate for modeling machine tool within the frequency range
of interest in HSM. However, more detailed models taking into
account shear deformation and rotational inertia are required
when the system behavior at higher frequencies is considered.
Equation of motion of substructure B is

mBðxÞ
@2uBðx,tÞ

@t2
þ
@2

@x2
EIBðxÞ

@2uBðx,tÞ

@x2

" #
¼ pBðx,tÞ ð16Þ

where pB(x,t) is the distributed lateral load. Referring to Fig. 1 the
distributed load pB(x,t) is divided into two terms: a concentrated
force at point q and a distributed load acting on substructure B

from the elastic interface layer:

pBðx,tÞ ¼ dðx�xqÞfqðtÞþKðxÞ½uAðx,tÞ�uBðx,tÞ�, ð17Þ

in which d(x–xq) is the unit impulse function and K(x) is a known
function within the joint interface domain. As shown in Fig. 1, a
harmonic force fqðtÞ ¼ Feiot is applied at point q. The system
experiences a harmonic motion in both substructures and using



Fig. 3. A system comprises of three substructures (a). Substructures A and B

coupled together and form a new substructure AB (b).
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Eqs. (11) and (12) these motions are expressed as

uAðx,tÞ ¼UAðxÞeiotffi
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Note that when the damping mechanism of the system is non-
proportional, the motions are not synchronous and functions
UA(x) and UB(x) are complex. Inserting the expressions developed
for harmonic motion of the substructures into equation of motion
of substructure B, expressed in Eq. (16), one obtains
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Projecting the equation of harmonic motion (20) on the Eigen-
functions fB

i ðxÞ produces n more equations in terms of unknown
coefficients ai and bi as
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Eq. (21) can be rearranged in matrix from as
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Simultaneous solution of Eqs. (15) and (22) leads to unknown
vectors {a} and {b}. Note that the coefficients of Eqs. (15) and (22)
contain the measured receptance matrix [HA] and the term o2[I].
Hence, vectors {a} and {b} are frequency dependent and must be
determined in each individual frequency of interest.

The steady-state response of the system to harmonic force fq(t)
can be found using known vectors {a} and {b}. Evaluating the
deflection shapes at any desired point, produces the transfer
function between that point and the point of excitation, e.g. the
frequency response function at point p due to excitation at point q

(shown in Fig. 1):

HpqðoÞ ¼
UBðxpÞ

F
¼
Xn

j ¼ 1

bjðoÞf
B
j ðxpÞ ð23Þ

The method proposed in this section is a substructuring
technique with added capabilities. The conventional coupling
methods join the substructures at discrete points, while the
proposed method couples substructures along a distributed joint
interface. Moreover, it is a multi-domain method that couples a
substructure with known model in frequency domain to another
model in modal domain, a very useful capability in modeling
machine tool dynamics.

The proposed substructuring method can couple several
substructures together. Consider a system comprised of three
substructures, as shown in Fig. 3a, connected using two different
distributed interfaces. The substructures A, B and C represent the
spindle-machine, holder and tool, respectively. The information
available about substructure A is its FRFs measured at finite points
while analytical models of substructures B and C are available.
Coupling of these three substructures is performed in two steps.
First, substructures A and B are coupled together through an
elastic layer interface to create a new substructure AB as indicated
in Fig. 3b. Then in the second step, by coupling the substructures
AB and C, the dynamics of the whole assembly is obtained. The
following demonstrated the process of coupling a spindle-
machine substructure to the holder and tool substructures using
the proposed method.
3. Component dynamic models

In order to perform substructure coupling using the proposed
method, appropriate models of all substructures are needed. The
component models may be presented in the modal or frequency
domains.

The available information regarding the spindle-machine
substructure is usually incomplete experimental data in fre-
quency domain. These data are in fact the FRFs that are extracted
by experimental measurement at a few points of the substructure.
The number of points that are chosen in measurement depends on
the length of the joint interface, desired degree of accuracy and
the restrictions that may exist in experimental measurement.
Fig. 4 shows the three measurement points of a spindle taper that
were selected to construct FRF matrix of this substructure, using
impact testing. Instrumented impact hammer Brüel&Kjær 8202
was used to excite the spindle taper and responses were
measured using a Brüel&Kjær 4393 accelerometer. Both
measured input force and output responses were transformed
from time domain to frequency domain using a dual channel
spectrum analyzer Brüel&Kjær 2032 and their ratio, i.e. the
frequency response is obtained. As indicated in Fig. 4 points 1 and
2 could not be excited by the hammer. Thus, some elements of the
FRF matrix cannot be obtained directly from experimental
measurements.

By exciting the spindle at point 3 and measuring the responses,
one column of spindle-machine FRF matrix is measured, namely
HS

13, HS
23 and HS

33. The plots of the measured FRFs are shown in
Fig. 5. Inspecting these plots, it is evident that the damping is very
high and extracting modal model from these data is impractical.
This leads to employing a frequency domain model for the
spindle-machine substructure. The method presented in this
paper is developed based on the assumption that an accurate
analytical/numerical model can be developed for the tool and the
holder. But the rest of machine including its spindle cannot be



Fig. 5. Measured frequency responses of the spindle taper.

Fig. 6. The tool holder (a) and its equivalent multi-span beam model (b)

Fig. 4. Selected points of the spindle taper for impact testing.

Table 1
Dimensional properties of the holder shown in Fig. 6.

Section (mm) 1 2 3 4 5 6 7

Di 14 14 0 10–12 12-15 15–21 16

Do 25 25–31 31–43 43–44 64 38 50

L 28 21 40 6 8 15 30
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modeled accurately and hence the spindle measured data are
directly employed to predict the dynamics of spindle/holder/tool
assembly. The obtained machine tool model, a hybrid analytical–
experimental model, is developed using minimum experimental
data and is capable to predict the dynamics of machine assembly
with different holder/tool combinations.

The remaining elements of the FRF matrix are obtained from
the measured FRFs using the following relations:

HS
11 ¼

US
1

F1
¼

US
1

F3

F3

US
3

US
3

F1
¼
ðHS

13Þ
2

HS
33

, HS
22 ¼

ðHS
23Þ

2

HS
33

,

HS
12 ¼HS

21 ¼
HS

13HS
23

HS
33

ð24Þ

Next we consider the holder substructure. A collet-type tool
holder with steep taper shank is used in the experimental case
studies. The tool holder is secured in spindle taper with a
threaded drawbar and the tool is clamped to the tool holder using
a tapered collet and a clamping nut. In order to couple this
substructure to the spindle-machine, an analytical model of
holder is developed and its modal model is used for the analysis.
The steel holder used in this work is shown in Fig. 6 and its
dimensions are given in Table 1.

The holder is modeled as a multi-stepped beam as shown in
Fig. 6(b). It is a non-slender short component and one would think
a Timoshenko beam model must be adopted to take into account
shear deformation and rotary inertia effects of the beam. As
discussed in Ref. [14] consideration of these effects does not
improve the tool point FRF prediction significantly in lower
modes. The frequency range of interest in high speed machining
that features spindle speeds of 10,000–40,000 RPM covers the first
few bending modes of tool and adopting the Euler–Bernoulli
beam theory is adequate in this application.

The holder has tapered sections that can be modeled with
stepped beam sections, i.e. each tapered section is replaced with
one or more stepped beams and the mean diameters of the
original tapered sections is chosen for the corresponding
equivalent straight beams. Filiz et al. [13] showed that the error
from the straight beam approximation is negligible if the
diameter ratio of tapered segments are less than 2. This criterion
is employed in modeling conical sections of the holder.

The remaining substructure of this assembly is the tool that is
the simplest one from modeling point of view. In order to connect
this substructure to the holder, its modal model is required. Since
the tool is normally a slender part, an Euler–Bernoulli stepped
beam model can precisely predict its dynamic behavior. In the
present study, two different cylindrical blanks are used instead of
the real fluted tools.
4. Coupling substructures using distributed joint interfaces

The first step in prediction of tool point FRF is coupling the
holder substructure to the spindle and obtaining the dynamic
model of the assembly in frequency domain. Fig. 7 shows the
concept of coupling these substructures. The obtained holder–
spindle assembly frequency response model is then coupled with
the tool model to evaluate the dynamics of the whole structure



Fig. 7. The machine spindle and holder (a) and their assembled representative

model (b)

Table 2
The identified properties of the joint interface between the spindle and the holder.

k (N/m2) g

1.26�1012 0.45

Fig. 8. The predicted and measured FRFs of spindle–holder at holder free end.

Table 3
The tool dimensions (mm).

Total length Shank length Diameter

Short tool 100 30 16

Long tool 200 30 16
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particularly at the tool tip. The modal model of the holder is
coupled to the response model of spindle-machine to produce the
frequency responses of the assembly. The obtained response
model comprises of direct and cross frequency response functions
of the assembly at points 4 and 5, as shown in Fig. 7. As a first step
the properties of joint interface between these substructures are
identified. In this study, the experimentally measured FRF of the
spindle–holder assembly at point 5 is used and the parameters of
the joint interface are identified by minimizing the discrepancy
between predicted and observed FRFs at this point.

Since the contact between the holder and spindle has a
considerable length, variation in the interface stiffness is significant.
Thus, by using uniform properties for the interface layer, an accurate
prediction of the system dynamics may not be achieved. Namazi
et al. [15] studied the variation in the stiffness of the joint interface
between the spindle and holder. They modeled this interface layer
using uniformly distributed translational and rotational springs at
the contact zone. By experimental verification, they proposed a
linear model for the stiffness of this layer as

K1ðxÞ ¼ k1 D1þ
D2�D1

Lj1
x

� �
, ð25Þ

where parameters D1 and D2 are the smaller and the larger
diameters of the holder taper, respectively, Lj1 is the length of the
taper contact, and k1 is the interface stiffness coefficient. In the
present study, a structural damping model is adopted for the joint
interface k1 ¼ kð1þ iZÞ as it is more descriptive of joint interfaces
damping mechanism compared to the viscous damping model
adopted in previous studies [16]. The parameter Z in this definition
is the interface structural damping coefficient. The corresponding
parameters of the holder are tabulated in Table 1. An optimization
exercise is conducted to obtain optimum values of the joint interface
parameters, namely k and Z while the objective function is defined
as the deviation of the predicted FRF at the free end of the holder
from the corresponding measured one. Table 2 shows the identified
values for the holder–spindle joint interface obtained by minimizing
this objective function and Fig. 8 compares the predicted and
measured frequency response functions of the spindle–holder
assembly at the holder free end.

The second step in modeling machine tool dynamics and
determining the tool point FRF is coupling the tool model to the
holder–spindle assembly. The idea is eliminating any repeated
experimentation on the tool and holder, so that all measurements
are limited to the previously measured spindle-machine FRFs.
Moreover, by adding analytical model of any chosen tool and
holder, the dynamics of the whole structure is obtained.

Table 3 tabulates the properties of the tools used in verifications
of this study. Using a short tool causes the spindle and holder to
have significant effect on the response at the tool point. Otherwise, if
a long and very flexible tool is used, then the dynamics of the system
is mainly affected by the tool and the errors in modeling other
substructures and identification of joints would not be detectable. As
shown in Fig. 7, the contact between the tool and holder occurs
along a short length. Hence, responses at two points of the holder
(points 4 and 5 as shown in Fig. 7) are used to construct the
frequency response model of the spindle–holder assembly.
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Ahmadi and Ahmadian [11] proposed a linear model for the
variation of the stiffness in the second joint interface as

K2ðxÞ ¼ ðk0þk1xÞð1þ izÞ ð26Þ

They verified by experiment that this first order model
adequately describes the joint behavior and higher order models
Fig. 9. The measured and predicted tool tip receptances using three component

modeling of the end mill (short tool).

Fig. 10. Tool point FRFs using three component modeling of the end mill

(long tool).

Table 4
Identified properties of the joint interface between the holder and the tool.

k0 (N/m2) k1 (N/m3) f

7.32�1010
�7.42�1011 0.25
do not give considerable improvement in predictions. A similar
optimization procedure is used to identify the parameters of this
interface as previous one. Table 4 gives the optimum parameters
of the second joint interface and Fig. 9 compares the predicted
tool point FRF with the measured one.

In order to validate the capability of the proposed method of
this paper in prediction of tool tip FRFs, the short tool is replaced
with a long tool whose properties are given in Table 3. The long
tool is mounted using the same clamping torques and contact
lengths as used in the case of short tool to ensure the changes in
the joint interfaces parameters are negligible. Fig. 10 compares
the predicted tool point FRF with the measured one. As shown in
this figure, the identified model predicts the behavior of the
system with required accuracy in a different machine tool
configuration.
5. Conclusions

A new substructuring method is proposed capable of coupling
the dynamics of different machine components through a
continuous damped-elastic layer interface. This is the case in
machine tool where the connections between components do not
occur in a single point, but along a distributed joint interface. By
using this new approach, a three-component model of the
machine tool is developed. The model employs the measured
dynamic flexibility of the spindle-machine assembly and analytic
models of the holder and tool to predict the dynamic behavior of
the whole assembly. Utilizing this model, the analyst can predict
the machining dynamics in various combinations of tool and
holder without the need for repeated measurements. The
proposed distributed parameter joint interfaces take into account
the change in stiffness along the joint interfaces, and also use a
displacement dependent damping mechanism to account for
structurally damped characteristics of the interfaces. The interface
layer parameters are identified using an optimization procedure
by minimizing the difference between predicted and measured
dynamic behavior of the machine assembly. The conducted
experimental study verifies the reliability of the proposed
coupling method and its capability in predicting the structure
dynamics.
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