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Abstract

When a shaker (or exciter) connects to a structure under test (SUT),
the dynamic characteristics of the excitation system (shaker, stinger, and
transducers) becomes coupled with those of the SUT. These couplings
contaminate recorded measurements, especially while exciting light/flexible
SUTs. The aim of this work is to consider interactions between excitation
system and the SUT and introduce a new analytical model for prediction and
hence reducing this systematic error. With the aid of this model, changes in
dynamic stiffness of the SUT are estimated based on stiffness of the excitation
system. The effects of excitation system location and stiffness are shown in
modal testing on a free–free beam. Furthermore, influence of force transducer
location is studied in the excitation system setup. The proposed method is
successfully used for identification and prediction of excitation system effects
on dynamic characteristics of the beam.

Introduction

The purpose of modal testing is to provide an
adequate estimate of a SUTmodel. To this end, impact
and shaker excitation techniques are usually used,
and each one has its own attributes. Impact testing
has consistency problems with input magnitudes and
direction besides excitation bandwidth and mixing
windows for signal processing. Moreover, impact
testing usually overdrives the SUT and excites its
nonlinear characteristics, which leads to erroneous
measured data. However, while using an exciter,
there is much better control on the excited frequency
ranges and the level of force (in different frequencies)
transmits to the SUT. As a result, exciter testing tends
to lead to higher-quality measurements over greater
bandwidths.1

Basically, a successful modal testing requires: (1)
reliable inputs from sensors; (2) use of robust
modal data analysis techniques. Some factors behind
practical aspects of excitation system setup may
cause to record impure measurements. During the
vibration under unidirectional loading, The SUT at

the excitation point may have DOFs besides the
loading direction. This is because of vibration mode
shapes, location and direction of loading as well
as suspension (especially when suspension is soft).
A shaker applies axial force to the SUT, and its
armature is designed to have the freedom to move in
its axial direction only. If the shaker is connected
directly to the SUT, it will constrain the SUT’s
tendencies to rotate and move in nonaxial DOFs at
the junction point. This resistance at the driving point
applies an undesired moment(s) and/or force(s) on
nonaxial DOFs of the SUT. These phenomena, which
called shaker–structure interactions, will show up as
systematic errors in acquired measurements.2

Piano wire is a method rarely used to link a shaker
to the SUT. This type of attachment decouples the
conjoined structures in all DOFs (the interaction
between the exciter and the SUT in nonaxial
directions is removed). In order to transfer excitation
force, the axial stiffness of the wire provides through a
preload. This preload is normally on the magnitude of
three to four times the range of the alternating load.
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Typically, both the test structure and shaker must be
fixed in order to keep tension on the wire. Therefore,
alignment of shaker and SUT becomes an issue.1

Another common method to reduce mentioned
interactions and measure exerted force to the SUT is
to mount force transducer directly on the SUT and
employ a stinger (long slender element) between
the shaker and the force transducer to transmit
force to the SUT. Attaching the force transducer to
the SUT can only decouple the SUT’s vibrations in the
axial direction of the excitation system. Therefore,
the stinger should have high axial stiffness but low
lateral and bending stiffness in order to excite the SUT
axially and to minimize interactions in all nonaxial
DOFs.

Many experts3–9 investigated the shaker–stinger–
structure interactions and try to reduce its effects
by changing excitation location and/or type and size
of stinger. These studies lead to general guidelines
depending on SUT, frequency range of interest, level
of exerted force and type of suspension. For light SUT,
Anderson5 suggested to mount a force transducer or
impedance head on the shaker’s armature. He showed
employing this technique improves the measurement
quality as it prevents the axial resonance of the
stinger. Afterwards, this technique was used for
testing on an ultra-lightweight, ultraflexible SUT by
Ruggiero et al.10 Ashory and Hajighorbani11 proposed
a model which includes the effect of the rigid body
modes of the shaker–stinger–structure system in low
frequency ranges. Mayer and Gomez12 addressed
some of major challenges of using a shaker, including
the interaction between shaker and the SUT, with the
goal of achieving an adequate linear estimate of the
SUT model.

Recently, Cloutier et al.1 studied and presented
the effects of alignment, location, length and type of
stinger on measured data on a test subject. Avitabile13

briefly explained some practical aspects of shaker
testing. He concluded that there is not a clear answer
to which stinger configuration leads to the optimal
results, and it depends on the SUT and the frequency
range of interest. Moreover, Warren and Avitabile14

used several test setup configurations to show the
effects of single shaker versus multiple shaker as well
as stinger type on measured response and extracted
mode shapes. The common problems associated with
setup of the shakers, stingers, and transducers and
resulting measurement errors are reviewed by Peres
et al.2 and Peres and Bono15 in two related studies.

These studies discuss the quality of shaker–stinger
attachment effects on a SUT. However, there is a
lack of an analytical formulation which models the

interactions between excitation system and the SUT.
Accordingly, the quantity of these effects on the
recorded measurements is not evaluated numerically.
In this article, the main goal is to construct
an analytical model for shaker–stinger–structure
system. The presented model is developed using
the SUT and excitation system dynamic stiffness
matrices.

Using two different excitation system setups,
a free–free beam is excited at three different
points on a wide frequency range, and dynamic
responses are measured. The recorded characteristics
are compared with the beam model. Next, dynamic
stiffness of the excitation system is successfully
identified via the introduced analytical model.
Eventually, with comparisons of experimental and
analytical results, errors caused by the excitation are
determined.

The Shaker–Stinger–Structure Model

A SUT (S) and an excitation system (E) setup are
shown in Fig. 1. These two systems are attached
together at node p with n DOFs. S[S](ω) and Z[S](ω)
are global dynamic stiffness matrix of the SUT with m
nodes and dynamic stiffness matrix of the excitation
system at node p, respectively (see Appendix I). As
every field parameter in this work is transferred into
the frequency domain, the ω argument is omitted
henceforth for simplicity.

The electromagnetic force, the only external force
exerted to the set of the SUT and the excitation
system, applies to the shaker’s armature at node o.
Also, the transmitted internal force at node p can
be assumed as two opposite external forces, f[Ep]

and f[Sp] (see Fig. 1). Using Eqs. (A1) and (A4) the
motion equations of the SUT and exciter system may
be written in the form:

f[S] = S[S]x[S] (1)

Figure 1 SUT and excitation system models.
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in which:

S[S] =

⎡⎢⎢⎢⎣
S[S11] S[S12] · · · S[S1m]

S[S21] S[S22] · · · S[S2m]

...
...

. . .
...

S[Sm1] S[Sm2] · · · S[Smm]

⎤⎥⎥⎥⎦
x[S] = {

x[S1],x[S2], . . . ,x[Sm]
}T

f[S] = {
f[S1], f[S2], . . . , f[Sm]

}T
f[Si] = {0}n×1 , i �= p

f[Ep] = Z[Ep]x[EP] − Z[Ep]H[Epo] f[Eo] (2)

f [Sp] = −f [Ep] (3)

where S[Sij] is the dynamic stiffness matrix between
nodes i and j, f[Si] and x[Si], respectively, are external
force and motion vectors at node i, x[p] = x[SP] =
x[EP] are motion vectors at node p and H[Epo]

is the dynamic flexibility matrix between nodes p
and o. Without losing generality of the model, first
degree of freedom at nodes p and o is assumed to
be in axial direction of the exciter. Therefore, the
electromagnetic force, f[Eo], ideally can be written in
the form:

f[Eo] =
{
f [Eo]1 , 0, . . . , 0

}
(4)

The motions and forces in axial direction of the
excitation system have very little interaction with
other DOFs at nodes p and o. Regardless of those
interactions; the axial DOFs at these nodes decoupled
from nonaxial DOFs. Therefore, Z[Ep] and H[Epo] had
the following properties:

Z
[Ep]
1i

= Z
[Ep]
i1

= 0

H
[Epo]
1i

= H
[Epo]
i1

= 0
i �= 1 (5)

The amount of exerted force in axial direction at node

p, f
[Sp]
1 , is usually known via a force transducer. By

incorporating Eqs. (2) and (3), the unknown parts of
transmitted force may be written in matrix form:

f[Sp] = I f[Sp] + Î f[Sp]

I f[Sp] = −I
(
Z[Ep]x[p] − Z[Ep]H[Epo] f[Eo]

)
(6)

where Îij = δi1δj1 and Iij = δij − δi1δj1 (Iij + Îij = δij),
hence δij is Kronecker’s delta. The only nonzero

element of Î f[Sp] is f
[Sp]
1 , which is known from

measurement. Applying Eq. (5), the above equation
can be simplified as:

I f[Sp] = −IZ[Ep]x[p]

IZ[Ep]H[Epo] f[Eo] = {0}n×1 (7)

After substituting Eqs. (6) and (7) in pth row of Eq.
(1) and simplifying, one obtains:

m∑
i=1

S[Spi]x[i] = f[Sp] = −I Z[Ep]x[p] + Î f[Sp]

(
S[Spp] + IZ[Ep]

)
x[p] +

m∑
i = 1
i �= p

S[Spi]x[i] = Î f[Sp]

(8)
By replacing Eq. (8) in pth row of Eq. (1), the

motion equation written in matrix form:

f̃[S] = S̃[S]x[S]

S̃[Sij] = S[Sij] + IZ[Ep]δpiδpj
f̃[Si] = {0}n×1 + Î f[Sp]δpi

(9)

where S̃[S] is modified global dynamic stiffness matrix
of SUT. The only differences between S̃[S] and S[S]

are at pp elements (̃S[Spp] = S[Spp] + IZ[Ep]) and the
other elements are the same. Instead of using
the global dynamic stiffness matrix of SUT in Eq.
(8), the dynamic stiffness of SUT at node p, Z[Sp],
can be used and with the same procedure one may
obtain:

Î f[Sp] = Z̃[Sp]x[p]

Z̃[Sp] = Z[Sp] + IZ[Ep]
(10)

where Z̃[Sp] is modified dynamic stiffness of SUT
at node p. Modifications in motion Eqs. (9) and
(10) are as a result of the attached excitation
system to the SUT, and they cause deviation of the
SUT dynamic characteristics from uncontaminated
one. For reduction or prediction of these deviations
generally three methods may be pronounced in the
frequency range of interest as follows:

• Reduction of IZ[Ep] with respect to S[Spp].
• Increase of S[Spp] with respect to IZ[Ep].
• Identification of IZ[Ep].

A common recommendation to achieve the goal
of the first method is to employ a flexible stinger.
There is a phenomenon, other than the buckling
and axial resonance of the stinger, which limits
the stinger flexibility. This phenomenon is missed
in the above guidelines and will be clarified later.
The second method objective can be obtained by
changing the excitation point to a stiffer location of
the SUT. Nodes of the SUT in nonaxial direction
of the excitation system are the best choice. The
third method probably can resolve the problem,
and the SUT characteristics can be extracted from
measurements. The accuracy of this method depends
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Figure 2 The SUT setup and

dimensions.

on correctness of the identified matrix, IZ[Ep]. In the
following, effects of these three methods are studied
on recorded data from testing on free–free beam.

Experimental Case Study

A steel beam (shown in Fig. 2) is suspended by
two narrow stings to simulate free–free boundary
condition.

A stinger with length of 12 cm and cross section
diameter of 3.5mm is used for connecting shaker
to the SUT. For investigation of force transducer
position effect, two excitation system setups, α and
β, are defined (see Fig. 3). The α setup composed of
a mounted force transducer on the SUT is adjoined
to the shaker via the singer. In the β setup, force
gage which placed on the shaker’s table is linked to
the SUT by stinger. Excitation system is connected
to the SUT at three different points, called I, II, and
III (see Fig. 2), and direct point response at these
locations are recorded.

Figure 3 α and β setups of the excitation systems.

Modeling and Discussion

The direct point measurement was done at locations
I, II, and III and the recorded FRFs are shown in Fig. 4
(see Appendix II).

The recorded FRFs of α and β setups for excitation
at point I are identical. Point I is a node for all torsional
and even bending mode shapes. Furthermore, for all
odd bending mode shapes, this point only moves in
z-axis direction (node for other DOFs). Therefore, in
Eq. (8), I Z[Ep]x[p] is equal to 0 for all odd bending
modes. Consequently, the excitation system attached
to point I is ineffective on the dynamic characteristics
of the SUT. Additionally, two recorded results at point
I reveal that ‘‘motion in the axial direction of the
excitation system decoupled from its other DOFs’’.

For comparisons of pure SUT responses with mea-
sured ones, a theoretical model of the SUT based
on Timoshenko beam theory is constructed. Young’s
modulus of the SUT identified with minimizing the
differences between natural frequencies extracted
from β set measurements at point I with correspond-
ing natural frequencies of the model.

Hence only bending modes of the beam are excited
in this study, for modeling the SUT three DOFs are
considered. Using benefits of spectral elements, local
dynamic stiffness matrices at point I, II, and III are
constructed as:

Z[SX ] =

⎡⎢⎣ Z[SX ]
ww Z[SX ]

wφ 0

Z[SX ]
φw Z[SX ]

φφ 0

0 0 Z[SX ]
uu

⎤⎥⎦
Î f[SX ] =

{
f [SX ]1 0 0

}T

x[X] = {
w[X] φ[X] u[X]

}T
(11)
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Figure 4 Measured FRFs at points I, II,

III and FRFs of the SUT model.

where X is I, II, or III. This model is used to calculate
the direct point FRFs of the SUT at points I, II, and
III. As can be seen in Fig. 4, recorded FRFs at points
II and III are inconsistent with the SUT model. These
dissimilarities increase at higher frequencies.

Nevertheless, the β setup test results are more
correlated with the SUT model. As a result, the
excitation system of β setup has fewer effects than α

setup on the dynamic characteristics of the SUT. Also
point II is stiffer than point III of the SUT, not always
but almost always; therefore, test results at point II
are more compatible with theory. Point III is near
the free edge of the SUT, and this phenomenon was
predictable.

The recorded data with α setup in frequencies
higher than 1 kHz is dissimilar to theory results, and
their resonances cannot be related. The dominant
difference, between theory and experimental data
recorded with β setup, takes place near frequencies
of 1200 and 2900Hz. At those frequencies in
experimental data, two resonances occur that they
are absent in the SUT model; therefore, those are
caused by the excitation system of β setup.

For prediction and study the effects of the excitation
system of β setup, a model is constructed for it (see
Fig. 5). Stinger, which is free on one side (this side

Figure 5 The excitation system model.

will be connected to the SUT) and is connected to
the mounted force transducer on the shaker’s table
from another side, is modeled as an elastic beam
(Timoshenko theory). The dynamic characteristics of
shaker and the effects of its suspension are not usually
known. The equivalent effect of these phenomenon at
the force transducer adjoin is modeled with unknown
mass and stiffness matrices, M and K, respectively.

As explained in theory section, the SUT response
is uninfluenced by the axial stiffness of the excitation
system. Furthermore, the axial vibration of the
excitation system, as concluded, is decoupled from
vibration in other DOFs. Therefore, axial vibration
of the excitation system is neglected in modeling of
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its motion. Accordingly, M and K are assumed to be
symmetric in the form of:

K =
[

Kφφ Kφu

Kuφ Kuu

]
M =

[
Mφφ Mφu

Muφ Muu

] (12)

where u and φ are in lateral and rotational direction
shown in Fig. 5. Since internal damping of the shaker
causes energy dissipation, elements of K are assumed
to be complex. Using spectral elements, IZ[Ep] is
constructed in the form of:

IZ[Ep] =

⎡⎢⎢⎣
0 0 0

0 Z
[Ep]
φφ

Z
[Ep]
φu

0 Z
[Ep]
uφ

Z
[Ep]
uu

⎤⎥⎥⎦ (13)

By applying Eqs. (11) and (13) to Eq. (10) the
modified dynamic stiffness of the SUT may be
obtained as below:

Î f[SX ] = Z̃[SX ]x[X]

Z̃[SX ] = Z[SX ] + IZ[Ep]
(14)

This model will be called modified SUT (MSUT)
model. According to the purpose of matching
measured FRFs by β setup with FRFs of the MSUT
model, the six unknown elements in Eq. (12) are
identified. The objective function is defined as the

difference between those two FRFs around their
natural frequencies. The identification is done by the
combination of random search and gradient methods.
The FRFs of the MSUT model is shown in Fig. 6.

Figure 6 shows the FRFs of the MSUT model
represent the measured data with better agreements
within frequency range of interest. The MSUT model
predicts the two resonances picks near 1200Hz and
2900Hz, while the SUT model fails to do so. The
smallest non-zero singular value of IZ[Ep] matrix, �1,
is shown in Fig. 6. Near the frequencies, �1 reaches
its local maximum values; the excitation system will
be in stiffest condition, and when �1 reaches its local
minimum (0), the excitation system will be in lateral
resonance condition.

The SUT model fails to predict the measured FRFs
in vicinity of the excitation frequencies that �1

reaches its local maximum value. At these situations
point p does not move laterally and becomes a
node in nonaxial direction. It is known in direct
measured FRFs an antiresonance point falls between
each two resonance peaks. Consequently, one may
conclude that, between each two resonances, there
is a frequency which at that frequency �1 will
reach its local maximum. Therefore, placing a force
transducer (or adding mass) at the point p (see Fig. 5),
increases the dynamic stiffness of excitation system,

Figure 6 The measured FRFs of the β

setup, the SUT and the MSUT models.
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and consequently, increases the number of natural
frequencies of the excitation system in the frequency
range of interest. In this situation, the number of
frequencies �1 reaches its maximum values will
increase in the measured frequency range, and the
measurement errors will increase. For that reason,
the inconsistency between α setup and SUT model is
due to placing the force transducer at point p.

Conclusions

In this article, effects of the excitation system on
the dynamic characteristic of the SUT are studied.
The general analytical model refers to SUT and
excitation system has been established. Moreover,
deviation of dynamic responses of the SUT caused
by connection of the excitation system has been
predicted. Based on current investigation, the least
deviation is around the lateral natural frequencies
of the excitation system. Furthermore, between
each two of these resonances, supreme deviation
in measurement will occur. Therefore, one way to
reduce measurement errors is to limit the number of
lateral excitation system resonances in the frequency
range of interest. This can be accomplished by placing
the force gage on the shaker’s table and/or decreasing
the length of stinger. Using a longer stinger does not
necessarily reduce the shaker and SUT interactions.
Finally, using the introduced model, extraction of
dynamic characteristics of any SUT is possible by
modal testing when shaker dynamic properties (mass
and stiffness matrices) are already identified and the
shaker suspension has not changed.
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Appendix I

A structure with m nodes and n DOFs at each
node is considered as shown in Fig. A1. External
force vector, f, and displacement vector, x, in the
frequency domain, can be related by global dynamic
stiffness matrix of structure, S, in the form:

f = Sx (A1)

in which

S =

⎡⎢⎢⎢⎣
S[11] S[12] · · · S[1m]

S[21] S[22] · · · S[2m]

...
...

. . .
...

S[m1] S[m2] · · · S[mm]

⎤⎥⎥⎥⎦
f = {

f[1], f[2], . . . , f[m]
}T

x = {
x[1],x[2], . . . ,x[m]

}T
(A2)
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Figure A1 A structure under external forces.

Figure A2 Stinger model in axial direction.

where x[i] ={x1[i], x2[i], . . . , xn[i]}T and f[i] = {f 1[i],
f 2[i], . . . , f n[i]}T, respectively, are displacement and
external force subvectors at node i, S[ij] = (S[ji])T is
dynamic stiffness submatrix between nodes i and
j and T is the transpose operator. Global dynamic
flexibility matrix, H=S−1, from Eq. (A1) may be
written in the form:

x = Hf (A3)

where

H =

⎡⎢⎢⎢⎣
H[11] H[12] · · · H[1m]

H[21] H[22] · · · H[2m]

...
...

. . .
...

H[m1] H[m2] · · · H[mm]

⎤⎥⎥⎥⎦
If external forces are only applied to nodes k and

l, f= {0, . . . ,0,f[k],0, . . . ,0,f[l],0, . . . ,0}T , displacement
vector at node k is obtained from Eq. (A2) as
follows:

x[k] = H[kk] f[k] + H[kl] f[l]

f[k] = Z[k]x[k] − Z[k]H[kl] f[l]
(A4)

Figure A3 Measured FRFs of the SUT from the

β setup.

where Z[k] = (H[kk])−1. By the absence of external
force at node l, f[l] = {0}n× 1 In Eq. (A4), one may
conclude:

f[k] = Z[k]x[k] (A5)

Independent of motion in other nodes, Z[k] in Eq.
(A5) relates the displacement at node k to the only
external force vector. Therefore, it is called dynamic
stiffness matrix at node k.

Appendix II

While using the β excitation setup, the measured
force with force transducer is not equal to the applied
force on the SUT in axial direction of the excitation
system. This unknown axial force can be calculated
with the aid of the transfer matrix between two ends
of stinger, q (force gage location) and p (attached point
to the SUT), shown in Fig. A2. As the motion and
forces in axial direction of stinger are independent of
other DOFs, the transfer matrix between two ends of
stinger can be written in the following form:{

x
[q]
1

f
[q]
1

}
=

[
T11 T12
T21 T22

]{
x
[p]
1

f
[p]
1

}
(A6)

where Tij is element of the transfer matrix, T.
The second row of Eq. (A6) may be simplified in
the form:

A
[pp]
11 = T22

1/A
[pq]
11 − T21

(A7)

where A
[pp]
11 = x

[p]
1 /f

[p]
1 and A

[pq]
11 = x

[p]
1 /f

[q]
1 are

point and transfer FRFs, respectively. In order to find
elements of the transfermatrix in above equation, two
tests are done on the β setup. Forces, displacements
and FRFs recorded from first and second test sets
are marked with superscripts * and **, respectively.
In the first test, excitation system is detached from

SUT and A
∗[pq]
11 is recorded. Because of the absence

of external force at the point p (i.e. f 1* [p] = 0),
from the first row of the matrix Eq. (A6) one can
conclude

T21 = 1

A
∗[pq]
11

(A8)
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In the second test, instead of the SUT, a particle
with known mass of M is attached to the excitation
system, and A

∗∗[pq]
11 is measured. In this experiment,

the external force exerted to the point p is
f 1* * [p] = −Mω2x1* [p]. Replacement of the measured
quantities in the second row of the matrix Eq. (A6)
leads to:

T22 =
(
T21 − 1

A
∗∗[pq]
11

)
/Mω2 (A9)

Substituting Eqs. (A8) and (A9) in Eq. (A7), one
obtains:

A
[pp]
11 = A

∗[pq]
11 /A

∗∗[pq]
11 − 1

Mω2
(
1 − A

∗[pq]
11 /A

[pq]
11

) (A10)

The above equation can be used to convert

measured transfer FRF from β setup, A
[pq]
11 , to point

FRF A
[pp]
11 . Themeasured direct transfer FRFs at points

I, II and III with β setup are shown in Fig. A3 before
converting them to point FRFs.
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