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The use of structural adhesives in automotive structures has been 
increased recently for their role in noise, vibration and harshness 
(NVH). Therefore, the dynamic behavior of structures containing 
bonded joints has become an area with numerous investigations over 
the past decades. Development of accurate formulations capable of 
representing adhesively bonded joint dynamics is a step forward in 
constructing the numerical models for one of the most useful kinds of 
joints in industry. Analysis of the adhesive layer between the two 
parts requires special assumptions which leads to using nonlinear and 
three dimensional models. Obtaining shape functions for an adhesive 
element by using finite element (F.E.) theory is a complicated and 
difficult task to do. The complexity is increased when it is assumed 
that the adhesive element is compatible with the plate element. In this 
paper, a new finite element formulation is developed for the adhesive 
layer which does not rely on shape functions and is compatible with 
the plate element. The accuracy of the proposed element is evaluated 
by using numerical and experimental results. 

©2016 Iranian Society of Acoustics and Vibration, All rights reserved. 
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1. Introduction 

The use of adhesive bonding as chemical welding has many advantages such as easy and flexible 
fabrication, good sealing, lightness, heat and sound isolation and also corrosion resistance. 
Additionally, the side effects on materials such as the thermal effects in welding or creating holes 
in the structure for bolted or riveted joints, are not present in adhesive bonding. These 
capabilities increase the desire for using the adhesive bonding as an excellent option for design 
and maintenance purposes. There are many important issues to consider as the designer or 
technical user of adhesive bonding: strength, durability and deformation of the adhesive as well 
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as their dynamic responses. Hence, a reliable and economic model is needed to express the 
realistic behavior of adhesive joints physically. 

There are two general approaches for theoretical analysis of adhesively bonded joints: closed-
form and numerical analyses. The expenses of experimental tests on structures encourages 
engineers to develop closed-form or numerical expressions of the problem. Valuable studies 
have been performed on closed-form solutions from 1960 to 1990 by setting differential 
equations and applying the boundary conditions in formulations. A comparative literature review 
on analytical models for adhesive joints was performed by Lucas da Silva et al. [1]. The review 
shows that almost all analytical models for adhesively bonded lap joints are two-dimensional. In 
a companion paper, they compared the analytical models with experimental results [2]. The 
closed-form solutions are able to give the stress and displacements in some points of the 
adhesive bonding but are limited to simple geometries. Numerical methods, as a general tool for 
analysis, are used to solve the differential equations approximately with an acceptable accuracy. 
The finite element method is used as the most applicable and powerful method among other 
numerical methods due to its many benefits. 

Dynamic analysis of structures containing adhesive joints has been investigated by many 
researchers in the literature through finite element modelling. For the case of modeling the 
adhesive layer using the finite element method, there are two general approaches. The first 
approach consists of using one layer of solid elements per composite ply linked together with the 
interface elements [3] . The second approach considers adopting one multi-layered shell element 
through the laminate thickness [4]. Kaya et al. [5] studied the effects of different dynamic 
characteristics in the adhesively bonded joints subjected to dynamic forces by using 3D F.E.A. 
They used the eight node brick elements and modelled the joint as a thin plate clamped from the 
left side. Then, the in-plane vibration analysis is constructed and the natural frequencies and 
mode shapes are measured. 

He [6] used the finite element method and investigated the free torsional vibration characteristics 
of adhesively bonded single-lap joints. In this work, 20-node quadratic brick solid elements are 
used for modelling the adhesive joint and the results of the F.E. model are validated by 
experimental modal analysis. He concluded that the adhesive properties have a great influence on 
the torsional natural frequency and mode shapes of the structure.  

Nobari and Jahani [7], Jahani and Nobari [8] and Naraghi and Nobari [9] employed the finite 
element method for identification of different dynamic characteristics of adhesive joints. They 
have used measured modal properties in the identification process. 

Hi and Oyadiji [10] investigated the effects of adhesive joint properties on the free vibration 
response of a cantilever beam in lateral direction. They used 20-noded quadratic brick element 
for modelling most of the adhesive and adherents and 15-noded quadratic triangular prism 
element for modelling transition zones from the adherents to the adhesive. Du and Shi [11] 
studied the influence of fatigue for the adhesive joint on dynamic modal properties of the bonded 
structures. They demonstrated experimentally that the modal frequencies of the bonded 
structures decrease with the increasing vibration fatigue cycles. They used a F.E. model in their 
analysis which was constructed by solid elements. Nwankwo et al. [12] studied the dynamic peel 
and shear stresses in an adhesively single lap jointed structure subjected to transverse pulse loads 
analytically. They verified their obtained results by a finite element model constructed in Abaqus 
using 8-noded solid elements. 



H. Jalali et al. / Journal of Theoretical and Applied Vibration and Acoustics 2(2) 133-144(2016) 

135 
 

As discussed above, adherents and adhesive are usually modelled in bounded structures by using 
solid elements. This type of modeling is not computationally efficient especially when adhesive 
joint is used between two plate substructures. In these circumstances, the plate substructures can 
be efficiently modeled by plate elements. Therefore a suitable element which is compatible with 
the plate element should be used to model the adhesive. The aim of this paper is to propose a 
new approach for finite element formulation of adhesive joint being compatible with the plate 
element. 

The paper is arranged as follows: section 2 describes the challenging problem of modeling an 
adhesive layer. Finite element formulation for a new adhesive element is introduced in section 3. 
In section 4, numerical and experimental case studies are given to show the accuracy of the 
proposed model. Finally, conclusions are drawn and references are outlined. 

2. Problem statement and solution method 

The aim of this paper is to obtain a proper finite element representation for the adhesive layer 
between two sheets which are modeled by plate elements as adherents. The common element 
usually used to consider the adhesive layer in finite element models is the solid element. Two 
problems arise when modeling the adhesive and the adherents by the combination of solid and 
plate elements. Firstly, the plate element has two rotational and one translational degree of 
freedom per node while the solid element has three translational degrees of freedom per node. 
Assembling these two elements, i.e. the plate and solid elements, gets complicated at their 
interface and leads to a gap along the elements’ edges as is shown in Fig. 1. This gap is due to 
the inconsistency between the displacement fields of these two elements. 

 

Fig. 1. The gap between the solid element (as adhesive) and plate the element (as adherent) 

Secondly, when solid elements are used for modelling the adhesive layer, experimental and finite 
element results are seldom found matching in all modes. This is especially true for torsional 
modes. The main advantages of modelling the adhesive layers for composite structures in torsion 
or bending by compatible elements are reducing the number of elements and thus the cost of 
calculations and increasing the accuracy of the results in torsional modes. 

The above discussion indicates the importance of constructing a new element for modeling 
adhesive joints. The new joint element should be compatible with the upper and lower plate 
elements having rotational degrees of freedom at each node. In the finite element method, 
usually the formulation of an element for the physical problem being described by differential 
equations is determined by using the shape functions. Since the equations governing the behavior 
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of the adhesive layer are not fully known, the approaches used in the finite element method are 
inapplicable to constructing a finite element formulation for the adhesive joint. 

One approach for modeling the adhesive layer is to use the solid element having rotational 
degrees of freedom. To have a solid element with rotational degrees of freedom, the rotation 
defined by Allman can be used [13, 14]. The nodal rotation used in Allman’s interpolation is not 
in conformity with the continuum-defined rotation. Also, some zero energy modes are observed 
when this definition is used for rotation of corner nodes. In fact, when all the nodal rotations 
about any particular axis assume the same value, strain-free modes appear which are interpreted 
as the equal-rotation modes [15]. These drawbacks make this element inappropriate for modeling 
the adhesive layer. The shape functions and the stiffness matrix formulation for the solid element 
with Allman defined rotation degrees of freedom can be found in several studies [15-18].  

In following section, a new formulation for finite element modelling of adhesive joints is 
proposed. For this end, the displacement field of the adhesive layer element is considered as a 
combination of the displacement fields of the upper and lower plate elements. 

3. Joint element formulation 

As stated in the previous section, the new joint element should be compatible with the plate 
elements in its upper and lower surfaces. Therefore, corresponding with the plate element, the 
rotational degrees of freedom are needed at each node. Since brick elements are usually used in 
modeling the adhesive in bounded structures, we consider that the joint element as an 8-noded/5-
DOFs brick element as is shown in Fig. 2. The nodal DOFs vector is considered as 

T
yxwvu ],,,,[  . One advantage of considering such a nodal DOFs vector is that the element is 

compatible with the plate elements in its lower and upper surfaces. In the following, the proper 
displacement field is developed for this joint element by using the shape functions of the upper 
and lower plate elements.  

 

Fig. 2. the brick element ( hba  ) with rotational degrees of freedom 

The joint element shown in Fig. 2 is considered to be composed of two plate elements. The lower 
plate element consisting of nodes 1, 2, 3 and 4 is located at 0z   and its displacement field is 

   ( , ) ( , ), ( , ), ( , )
T

L L L LY x y u x y v x y w x y
. The upper plate element composed of nodes 

5, 6, 7 and 8 is located at hz   and its displacement field is
T

UUUU yxwyxvyxuyxY )],(),,(),,([)},({  . iu , iv  and iw  with ,i L U  may be expressed as, 
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44332211 ),(),(),(),(),( uyxNuyxNuyxNuyxNyxuL   (1) 

 
44332211 ),(),(),(),(),( vyxNvyxNvyxNvyxNyxvL   (2) 
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The same relations can be developed for Uu , Uv  and Uw . In Eqs. (1-3) 4,...,2,1),,( iyxNi  and 

12,...,2,1),,( iyxNi  are the shape functions corresponding to in-plane and lateral deformations 

of a plate element which are given in the Appendix [19]. 

In this paper we consider the displacement field of the joint element as a combination of the 
displacement fields of the lower and the upper plate elements as:  

 
)},(){()},(){()},,({ yxYzgyxYzfzyxY UL    (4) 

where TzyxwzyxvzyxuzyxY )],,(),,,(),,,([)},,({  . )(zf  and )(zg  are governed by the 

element properties and specially its rigid body modes. The joint element has six rigid body 
modes: three translational and three rotational. Three translational rigid body modes of the joint 
element are presented in Fig. 3. The translational rigid body modes can be expressed 
mathematically as, 

 
 )},({)},({)},,({ yxYyxYzyxY UL  (5) 

By substituting Eq. (5) into Eq. (1), the first constraint on functions )(zf  and )(zg  is obtained 
as, 

 
1)()(  zgzf  (6) 

 

   

Fig. 3. Translational rigid body modes of the joint element 

The second constraint on functions ( )f z  and ( )g z  can be obtained by considering the rotational 
rigid body mode. A typical rotational rigid body mode - i.e. rotation about y axis - is shown in 
Fig. (4).  
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Fig. 4. Two different views of a rotational rigid body mode 

The second constraint on functions )(zf  and )(zg  is obtained in the following by using the 
rotational rigid body mode about y axis. Rotation about the y axis results in displacement along 
the x direction, i.e. ),,( zyxu  for the joint element. Since the positive local z axis of the lower 
plate element and the negative local z axis of the upper plate element contribute in constructing 
the displacement along x direction, by using Fig. (4), ),,( zyxu  can be expressed as,  

 ),()(),()(),,( yxzgyxzfzyxu yUyL    (7) 

where   ),(),( yxyx yUyL  is the rotation about y axis. On the other hand, a strain free- or 

rigid body- mode is obtained when, 

 ),()/1(),(/),,( yxhzyxhzzyxu yUyL    (8) 

Eqs. (7) and (8) are identical which result in the second constraint on functions )(zf  and )(zg  
as, 

 1/2)()(  hzzgzf  (9) 

Solving Eqs. (2) and (9) simultaneously yields to the proper )(zf  and )(zg  functions. 
Therefore, the unique combination of the lower and upper plate elements’ displacement fields as 
the displacement field of the joint element is obtained as, 

 )},(){/()},(){/1()},,({ yxYhzyxYhzzyxY UL   (10) 

The displacement field presented in Eq. (10) can be used to construct the finite element 
formulation of the joint element [19]. The stress-strain relation of the joint element is 

}]{[}{  D  and the joint stiffness matrix is obtained by using Eq. (11), 

 
V

T
J dVBDBK ]][[][][  

(11) 

where [D] and [B] are respectively the constitutive and strain-displacement matrices. In the 
following section, the numerical simulation and experimental validation of the proposed 
adhesive joint element are presented. 
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4. Numerical simulation and experimental validation 

The proposed model in the previous section is used in construction of F.E. models of two 
structures: adhesive layer as a connection of a plate to foundation and an adhesively bonded joint 
of two plates. The capability of the proposed model in representing the dynamic properties of 
these structures is investigated in the remaining of this section. 

4.1. Numerical simulation: Panel bonded to the foundation 

The structure considered in this section is a rectangular steel plate with dimensions of a=30 cm 
and b=20 cm. A layer of adhesive is used to clamp the plate to its underlying surface as shown in 
Fig. 5. The thickness of the plate is 1 mm and the thickness of the adhesive layer is 2t m m   
along all sides.  

 

Fig. 5. Panel bonded to the foundation using adhesive 

First, a finite element model of this structure was constructed in MSC.NASTAN® employing 
QUAD4 elements for modelling the plate and HEX8 elements for modeling the adhesive layer. 
HEX8 is an 8-noded/3DOFs solid element. 400 solid elements were used in the MSC.NASTAN® 
finite element model to represent the adhesive layer. The material properties used in F.E. 
modelling for steel plate and adhesive joint are tabulated in table 1. The adhesive was considered 
Sikaflex 252 which will be later used in experimental case study. 

Table 1. Adhesive and steel plate material properties 

 Young Modulus (GPa) Poisons’ Ratio Density (Kg/m3) 

Steel plate 210 0.3 7800 

Adhesive 3 0.34 1140 

 

The optimum number of elements was used for modelling the steel plate such that increasing the 
element numbers did not change the natural frequencies. The first three natural frequencies of 
this structure are presented in Table 2. 
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Table 2. First three natural frequencies in (Hz) obtained from different F.E. adhesive modelling approaches 

 1st mode 2nd mode 3rd mode 

MSC.NASTRAN model 552.62 720.84 1023.16 

Solid element with Allman rotation  562.00 742.00 1011.00 

Proposed joint model 560.00 727.00 1034.00 

 

The capability of the solid element with Allman rotational degrees of freedom and the proposed 
joint model in this paper in representing the dynamics of the above structure was investigated 
next. For this purpose, a finite element model with fewer elements for modelling the adhesive 
layer was constructed in MATLAB®. The new finite element model employed 64 elements for 
modelling the adhesive layer. The natural frequencies of the first three modes are compared in 
Table 2 for the solid element with Allman rotation and the proposed joint element. The results 
presented in Table 2 show that the new joint element is capable to generate the results obtained 
by solid element - i.e. the MSC.NASTRAN model - but with using fewer number of elements. This 
is not the case for the solid element with Allman rotation which is the commonly used element 
for modelling adhesive joints. In Fig. (6), the mode shapes of the MSC.NASTRAN model are 
compared with the mode shapes obtained from the model constructed using the proposed joint 
element.  

 

 

 
 

 

 

 

 

 

 

Fig. 6. Comparison of the mode shapes with MSC.NASTAN model (left) and the proposed joint element (right) 
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4.2. Experimental structure: Adhesively bonded joint 

An adhesively jointed structure as shown in Fig. 7 is considered in this section to investigate the 
ability of the proposed joint element in modelling the actual adhesive joints. In this case, the 
results obtained by finite element modelling are compared with the experiment results. Reliable 
experimental results can be assumed as the reference to validate numerical methods. 

The test structure consists of two steel plates of thickness 1 mm bounded together with a layer of 
adhesive used in automotive industry with the thickness 3.5 mm. The industrial name of the 
adhesive layer is Sikaflex 252 with 1-C polyurethane chemical base. The material properties of 
the steel plates and adhesive are presented in Table 1. In order to avoid the effects of boundary 
conditions on natural frequencies, free-free boundary condition provided by suspending the 
structure using flexible strings is considered.  The experimental test set-up is shown in Fig. (7). 
The hammer excitation technique is used to obtain the frequency response functions (FRFs) of 
the structure. The structure was excited by a B&K modal hammer and its dynamic response was 
measured by an accelerometer as shown in Fig. (7). The excitation force was measured by a 
force transducer provided in the hammer head. The measured force and response signals were 
transferred to a two channel B&K modal analyser in order to obtain the frequency response 
functions. Two measured FRFs are shown in Fig. (8). By using the measured FRFs, the natural 
frequencies are extracted. The first three natural frequencies are shown in Table 3. 

First, a finite element model is constructed in MSC.NASTRAN® using relatively large number 
of elements. The adhesive layer is modelled by HEX8 solid elements. The mode shapes and the 
corresponding natural frequencies of the F.E. model are presented in Fig. (9). The 
MSC.NASTRAN® model and the experimental test results show that the identified three 
dominant natural frequencies-presented in Table 2 are correct and there is no missing mode 
between these three modes. 

 

 

Fig. 7. Test set-up (left) and a schematic of the test structure (right) 
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Fig. 8. Measured FRFs using the hammer test 

 

 

 

 

Fig. 9. Mode shapes from the MSC.NASTRAN® model, a) 20.5 Hz, b) 34.29 Hz, c) 52.45 Hz 

The convergence rate of the proposed joint element is compared to the conventional elements 
used in modelling the adhesive layer as described in the following. A finite element model is 
created employing three different elements for representing the adhesive layer: the 8-noded/3-
DOF solid element, the solid element with Allman rotation degrees of freedom and the proposed 
joint element in this paper. In all cases, 16 elements are used for modelling the adhesive layer. 
The results of the F.E. models are compared with experimental results in Table 3. 
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Table 3. Comparison of experimental and F.E. natural frequencies         

 1st mode 2nd mode 3rd mode 

Experiment 19.5 30.0 47.5 

Solid element without rotation (Err.) 24.0 (23%) 33.1 (10 %) 54.3 (14.4 %) 

Solid element with rotation (Err.) 23.0 (18%) 31.6 (5.5 %) 53.4 (12.6 %) 

Proposed joint model (Err.) 19.7 (1.2 %) 32.0 (6.6 %) 48.8 (2.73 %) 

 

The results presented in Table 3 indicate that the proposed joint model is capable to regenerate 
the experimental results with an acceptable accuracy.  

Conclusion 

Finite element modelling for adhesive joint was explored in this paper. To figure out the best 
model to represent dynamic behaviour of the adhesive layer, different types of elements were 
applied. It was found that the most accurate model is the joint element which is compatible with 
the plate element. The accuracy of the proposed joint model was validated by numerical and 
experimental case studies. 

Appendix 

Thin plate element shape functions are ( 2/12/1   , 2/12/1   ), 

,/,/ byax    

4/)21)(21(),(1  yxN  

4/)21)(21(),(2  yxN  

4/)21)(21(),(3  yxN  

4/)21)(21(),(4  yxN  

 3/4-  + 3/4 - 2 + 2 -  + 2 -4/1),( 3333
1 yxN  

)2/4/2/4/8/8/16/1(),( 3232
2   byxN  

)2/4/2/4/8/8/16/1(),( 3232
3   ayxN  

 3/4  - 3/4 - 2 - 2   + 2 4/1),( 3333
4 yxN  

)2/4/2/4/8/8/16/1(),( 3232
5   byxN  

)2/4/2/4/8/8/16/1(),( 3232
6   ayxN  

 3/4  - 3/4  2 + 2 -  - 2 -4/1),( 3333
7 yxN  

)2/4/2/4/8/8/16/1(),( 3232
8   byxN  
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)2/4/2/4/8/8/16/1(),( 3232
9   ayxN  

 3/4-  + 3/4  2 - 2   - 2 4/1),( 3333
10 yxN  

)2/4/2/4/8/8/16/1(),( 3232
11   byxN  

)2/4/2/4/8/8/16/1(),( 3232
12   ayxN  
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