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Dynamic response analysis of mechanical structures is usually performed by 
adopting numerical/analytical models. Finite element (FE) modeling as a 
numerical approach plays an important role in dynamic response analysis of 
complex structures. The calculated dynamic responses from FE analysis are 
only reliable if accurate FE models are used. There are many elements in 
real mechanical structures which make constructing accurate FE models 
difficult. For example, modeling the boundary supports of mechanical 
structures are usually challenging because of the uncertainties existing in 
their stiffness values. The stiffness values of boundary supports can be 
identified by using experimental natural frequencies and hence the FE model 
can be corrected. In this paper, the FE modeling and updating of propulsion 
shaft lines in a ship structure is considered by employing experimental 
modal parameters, i.e. natural frequencies. Natural frequencies of shaft lines 
are measured by performing experimental vibration testing. The corrected 
FE models are used and dynamic response analysis of shaft lines is 
conducted. 

©2015 Iranian Society of Acoustics and Vibration, All rights reserved 

1. Introduction 
The propulsion system of a ship- consisting of main engine, gearbox, propulsion shaft line, 
propeller and pertinent auxiliary system- is used to propel the ship and to control its 
maneuvering. The essential part of a ship propulsion system is propulsion shaft line. The 
excitation forces originated from the shaft line can greatly affect the dynamic response of the 
whole ship structure. A reliable FE model of the shaft line is an assist in dynamic response 
prediction of the ship structure. 

FE modeling of the propulsion shaft line has been considered by many investigators in the past. 
Murawski [1, 2], Murawski and Ostachowicz [3] and Volic et al. [4] used the FE model of a 
ship's power transmission system in calculation of the alignment parameters for the shaft line. 
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The power transmission system was modeled as a four degree-of-freedom system by Rao [5] 
using spring and damping elements. Damping elements were used between the main engine and 
the gearbox to reduce torsional vibrations, and between the thrust bearing and the propeller to 
reduce lateral vibrations. Connection of the main engine, gearbox, bearings and propeller to the 
foundation was modeled by using spring elements. Hara et al. [6] analyzed the torsional, axial 
and lateral vibrations of a main engine propeller shaft system with building block approach. The 
crankshaft was modeled by three dimensional solid elements. The propeller was considered as a 
material point and the added mass of water was taken into account by its mass, moment of inertia 
and polar moment of inertia. Equivalent spring elements were used to consider the bearing and 
foundation flexibilities. 

FE model updating of rotor shafts has a long history in structural dynamics. Feng et al. [7] 
considered FE model updating of two rotor shafts by using several optimization techniques. They 
corrected the FE model of a general shaft and a shrinkage fitted shaft assembled with a disk by 
employing a genetic algorithm. Kwon and Lin [8] developed a method for selection of the 
frequency points in FRF-based model updating approach. They applied their method in the 
updating procedure of a rotor-bearing system. Tiwari et al. [9] reviewed the identification 
methods of dynamic parameters for bearings. 
In this paper, dynamic analysis of a ship propulsion shaft lines is considered. For this end the 
shaft lines are modeled by using the finite element method. Experimental vibration testing is 
conducted on the shaft lines and their dynamic properties are measured. The flexibilities of the 
connection points in the shaft lines need to be considered precisely in order to obtain reliable FE 
models. Therefore the FE model of the shaft lines are corrected by using measured natural 
frequencies. Finally, the obtained accurate FE models are employed and the dynamic behavior of 
the shaft lines at different rotational speeds are investigated in terms of Campbell diagrams. 

2. Problem statement 
The propulsion system of a ship structure which consists of several elements is used to transmit 
thrust energy from the engine to the propeller. Different components of a ship propulsion system 
include: main engine, couplings, gearbox, bearings, shaft line, brackets and propeller. Two types 
of shaft lines- namely outer and inner shaft lines- are used in the propulsion system of the ship 
under consideration in this paper. The inner shaft line is monolithic but the outer shaft line is 
composed of three parts which are connected through rigid couplings. Also, the outer shaft line is 
longer than the inner shaft line which makes it more flexible. The extra flexibility of the outer 
shaft line reduces its natural frequency compared to the inner shaft line. The shaft lines are 
depicted in Fig. (1) and (2).  

In the propulsion system, the main engine is connected to the gearbox by using a flexible 
coupling and the gearbox is connected to the shaft lines through a rigid coupling. The flexible 
coupling has negligible lateral stiffness and hence decouples the dynamics of the main engine 
from other parts of the propulsion system in the lateral direction. Therefore, the dynamics of the 
shaft lines can be investigated without considering the main engine mass properties. The shaft 
lines are connected to the ship structure through brackets, internal bearing and astern tube. Due 
to the rotational speed, the dynamic behavior of the shaft lines is complex and under certain 
circumstances- for example misalignment or unbalancing- can lead to extra vibration in the ship 
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structure. The dynamic response of the shaft line can be investigated by using an accurate 
dynamic model. In the following section, dynamic modeling of the shaft lines is explained. 

3. Theory 

3.1. Dynamic modeling  
The equation governing the dynamic response of a rotating shaft in a stationary reference frame 
is written as, 

 )}({)}(]{[)}(]){[]([)}(]{[ tftqKtqGCtqM    (1) 

where  M ,  C ,  G  and  K  are the mass, damping, gyroscopic and stiffness matrices 

respectively.  ( )q t  and  ( )f t  are the system response and external forcing vectors and   is 
the shaft rotational speed. The free vibration of an un-damped rotating shaft is governed by, 

 }0{)}(]{[)}(]{[)}(]{[  tqKtqGtqM   (2) 

The Campbell diagram which is the curve of natural frequencies versus rotating speed can be 
used to obtain the critical speeds. In fact the intersection points of natural frequency lines and 
excitation frequency lines are the critical speeds. The critical speeds can also be obtained by 
solving a new eigen problem as described in the following. 
The synchronous motion of a rotating shaft (i.e. Eq. (2)) occurs when the response of Eq. (2) is 
considered in the following form, 

 tjetq }{)}({   (3) 

where   and }{
 
are respectively the natural frequency and the mode shape. By substituting Eq. 

(3) into Eq. (2) and knowing that at critical speeds   , Eq. (4) is obtained,  

 0}]){[]([ 2   MK  (4) 

where    M M j G     . The critical speeds of the rotating shaft are the natural frequencies 
obtained from Eq. (4).   

3.2. Model correction 
There are usually parts in real structures- for example joints or connections- which their 
modeling or model parameters are uncertain when constructing FE models. The FE models can 
be updated and the unknown joints or connection parameters can be identified by using 
experimental results and employing the eigen-sensitivity approach. In the eigen-sensitivity 
approach, variation in the jth natural frequency is related to the change in design parameters 

Nipi ,...,2,1,   as, 
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is the sensitivity of thj  natural frequency with respect to ip  and can be calculated as 

described in the following. The FE model is corrected by using the natural frequencies measured 
when 0  . From Eq. (4) and by setting 0   one obtains, 
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In Eq. (6) j
 
is the natural frequency. By taking differentiation of Eq. (6) with respect to 

parameter ip  the following equation is obtained, 
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Pre-multiplying Eq. (7) with  T

j , assuming that the mode shapes are mass normalized i.e. 

     1
T

j jM   and after some algebraic manipulations one can conclude that,  

 }{][}{}{][}{ 2
2

j
i

T
jjj

i

T
j

i

j

p
M

p
K

p














 (8) 

By substituting Eq. (8) into Eq. (5) and writing Eq. (5) for n  natural frequencies, the FE model 
updating problem is formulated as, 
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where ne  and na  are the natural frequencies from experiment and FE analysis respectively. By 
considering some initial values for the parameters ip , Eq. (9) is solved iteratively and the initial 
values are updated. Updated parameters in the thr  iteration is obtained as 1r r r

i i ip p p   . 
Parameter correction is continued until the norm of differences between experimental and FE 
models become less than some pre-determined values, i.e.    2 2

e a    . In the following 

section, FE modeling of the shaft lines is described. 

4. FE modeling 
Due to the complexity of shaft lines, dynamic modeling is performed in Ansys. The geometry of 
the FE models of shaft lines are constructed by using technical drawing of the ship structure. The 
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lengths of inner and outer shaft lines are respectively 10.8 m and 17.0 m. The shaft lines have a 
solid cross section with an outer diameter of 0.14 m in most of their parts. The inner shaft line 
was mounted on the ship by using two brackets and one bearing. The outer shaft line was 
mounted by using three brackets and two bearings. There were also two supports for each shaft 
line in the gearbox. The Solid45 element of Ansys software is used in FE modeling of the shaft 
lines. Since the engine and the gearbox are connected by using a flexible coupling, the dynamics 
of the engine does not affect the dynamics of the rest of the propulsion system. Therefore in FE 
modeling of the shaft lines, the engine is not modeled. The effects of the shaft lines’ supports are 
considered by using linear springs. Therefore, the brackets, the internal bearing, the astern tube 
and the bearings of the gearbox are modeled by using spring elements in the lateral and vertical 
directions. The FE models of the shaft lines are presented in Fig. (1) and (2). 

 
Fig. 1. FE model of the inner shaft line 

The shaft lines are made of steel and the material properties of E=210 Gpa, =7800 kg/m3 and 
=0.3 are used in FE modeling.  

 
Fig. 2. FE model of the outer shaft line 

In the FE models shown in Fig. (1) and (2), the propeller is represented by a solid disk with mass 
and inertial properties equal to the real propeller. It is worth mentioning that the propeller and a 
section of the shaft lines- i.e. the section between the astern tube and propeller- are in water. 
Therefore, the mass effects of water are added to the FE models of these sections. For example 
the added mass moment of inertia to the propeller caused by water is calculated by using Eq. (10) 
(MacPherson et.al [10]),  

 
z

EARDCDCI IEwIEE 



22

5 )/(0703.0,   (10) 
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where w  is the water mass density, D  is the propeller diameter, EAR  is the propeller expanded 
area ratio and z  is the number of propeller blades. The stiffness coefficients of the support 
springs in the FE models shown in Fig. (1) and (2) are unknown. These coefficients can be 
identified by updating the FE models using the experimental natural frequencies of the shaft 
lines. In the next section, the experimental vibration testing conducted on the shaft lines is 
explained. 

5. Experimental vibration testing 
Experimental vibration testing is performed on the shaft lines at zero rotational speed, i.e. 0  , 
in order to record their dynamic responses; the recorded dynamic responses are used later in this 
section and the natural frequencies of the shaft lines are extracted. The shafts were tested at their 
actual use condition, i.e. when they were mounted on the ship. It is well known from classic 
vibration theory that only the natural modes contribute in constructing the free vibration response 
of structures. Therefore, the natural frequencies can be obtained by analyzing the measured free 
responses of the shaft lines. In order to measure the free responses, the shaft lines are excited by 
using hammer and their dynamic response is measured by employing DJB A/120/V 
accelerometers. Four measurement points- three on the outer shaft line and one on the inner shaft 
line- are selected for performing the vibration tests. The shaft lines are excited at each point 
individually by hammer and the response of all measurement points are recorded. A NI USB-
4431 data acquisition module is used for digitizing the acceleration response signals. The 
digitized signals are then recorded for future analysis. A schematic of the measurement setup is 
presented in Fig. (3).  

 
Fig. 3. Schematic of the measurement set-up 

In Fig. (4) the hammer used for exciting the shaft lines and one of the accelerometers used for 
measuring the shaft line free vibration response are shown. A measured dynamic response due to 
exciting point P1 is presented in Fig. (4). Due to the presence of damping in the shaft lines, the 
recorded time domain responses are transient. As it was explained earlier in this section, the 



H. Jalali and H. Ahmadian / Journal of Theoretical and Applied Vibration and Acoustics 1(2) 85-95(2015) 

91 
 

frequency contents of the recorded response signals represent the natural frequencies of the shaft 
lines.  

 
Fig. 4. Exciting a shaft line by hammer (left) and measuring its dynamic response (right) 

 
Fig. 5. Measured acceleration signals 

The frequency contents of the signals can be extracted by transferring the signals from time to 
frequency domain. The Continuous Wavelet Transform (CWT) is employed to decompose the 
recorded signals and hence to obtain the natural frequencies (Chen et.al. [11]). The CWT for a 
time domain signal is defined as, 

 




  dgbaxabaWx x )()(),()}({ *CWT  (11) 
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where a  and b  are dilation and translation parameters and g  is the Morlet wavelet function 
which is defined as Eq. (12). It is worth mentioning that in Eq. (11), *( )g   denotes the complex 
conjugate, 

 2
0 )2/1()( tj eeg    (12) 

where 0  is a tunable parameter. ( , )xW a b  is a complex function and it can be shown that if ( )x   
is the free vibration response of a structure, the following equations can be used to obtain the 
natural frequencies and damping ratios, 

 10 ),(ln cbbaW nx    (13) 

 20 ),( cbbaW dx    (14) 

in Eq.s (13) and (14), 0a  is the point at which ( , )xW a b  is maximum,   is the damping ratio, 

n  is the natural frequency and d  is the damped natural frequency, i.e. 21d n    . By 
using the theory explained above, the natural frequencies of the shaft lines are obtained. Table 
(1) shows the first five natural frequencies of the shaft lines, 

Table 1. The experimental natural frequencies (Hz) 
ω5 ω4 ω3 ω2 ω1  

120.56 74.85 59.33 38.82 31.83 Inner shaft line 
54.55 47.19 37.64 31.58 22.58 Outer shaft line 

 

The natural frequencies presented in Table (1) are used in the next section and the FE models are 
corrected.  

6. FE model correction 
As it was stated in the preceding sections, the stiffness values of the supports used in the FE 
models of the shaft lines, i.e. ik , ik , 1,2,...,5i   are uncertain. A set of reliable vales for support 
stiffness coefficients can be obtained by updating and correcting the FE models. FE model 
correction is done by minimizing the norm of differences between experimental natural 
frequencies and the natural frequencies obtained from FE model. The objective function in this 
minimization problem is defined as (Mottershead and Friswell [12]),  

 }{}{}{}{min: fem
T

femex
T

exOBJ   (15) 

where  ex  and  fem  are respectively the vector of experimental and FE natural frequencies. 
In this paper, the minimization is performed by using the optimization toolbox of Ansys. In order 
to update each FE model, Eq. (15) is defined as objective function and ik  or ik  1,2,...,5i   is 
defined as design variables in Ansys optimization toolbox. The support stiffness parameters are 
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then identified by minimizing the objective function of Eq. (15). The identified stiffness 
parameters for the inner and outer shaft lines are presented in Table (2), 

Table 2. The identified support stiffness parameters (MN/m) 

1k 2k 3k 4k 5k 
72.7 193 227 107.7 86.7 

1k 2k 3k 4k 5k 
73.2 243.7 131 160.5 172 

 

In order to measure the accuracy of the updated FE models, the experimental natural frequencies 
are compared with the natural frequencies obtained from updated FE models in Table (3), 

Table 3. Experimental and updated natural frequencies (Hz) 
ω5 ω4 ω3 ω2 ω1  

Inner shaft line 
120.56 74.85 59.33 38.82 31.83 Exp. 
103.7 78.5 55.8 38.9 30.9 FEM 
-13.8 4.9 -5.9 0.25 -2.8 ERR. (%) 

Outer shaft line 
54.55 47.19 37.64 31.58 22.58 Exp. 
55.8 48.4 37.1 30.3 21.4 FEM 
2.3 2.7 -1.3 -3.8 -6.1 ERR. (%) 

 

Results presented in Table (3) show that the updated FE models are well capable to regenerate 
the natural frequencies of the real shaft lines. This indicates that the FE models constructed for 
the shaft lines are accurate enough to predict their dynamic response.  

7. Dynamic analysis and Campbell diagram 
The FE models updated in the previous section can be used for dynamic response analysis of the 
shaft lines. Since the shaft lines are flexible, shaft rotation speed changes their natural 
frequencies. In fact, the induced gyroscopic effect due to the shaft rotation speed alters the 
natural frequencies. Predicting the natural frequencies of the shaft lines in different shaft rotation 
speeds enables one to determine the optimum operation speed range for the ship. The change in 
natural frequencies by changing the shaft rotation speed is presented by Campbell diagram. In 
Fig. (6) and (7) the Campbell diagrams for the inner and outer shaft lines obtained from the 
corrected FE models are presented. 
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Fig. 6. Campbell diagram for the inner shaft line 

Fig. 7. Campbell diagram for the outer shaft line 

The Campbell diagram for the inner shaft line predicts that the blade passing frequency equals 
the first bending natural frequency at engine speed about 1400 rpm. Therefore there is a 
possibility of excessive vibration of inner shaft lines in this engine speed. In the other words, it is 
better not to run the engine at speed of 1400 rpm for long time since there is a possibility of 
resonance for inner shaft line at this engine speed. The same condition occurs for the outer shaft 
lines at engine speeds of 860 rpm and 1050 rpm.  
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8. Conclusions 
FE modeling of the shaft lines of a ship structure was considered in this paper. In FE modeling, 
the main shaft was modeled by using 3D solid element of Ansys. The effects of the shaft lines’ 
supports were considered in the FE model by using linear springs in lateral and vertical 
directions. Experimental vibration testing was conducted on the shaft lines and the natural 
frequencies were extracted. The FE models were corrected by using experimental results and the 
support stiffness coefficients of the shaft lines were obtained. The corrected FE models were 
used to predict the dynamic response of the shaft lines. 
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