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Abstract

Accurate representation of different parts of a mechanical system is important in construction of
mathematical models for structural dynamic analysis. There are usually elements in structures- for
example joints or boundary conditions- which demand more efforts for precise modeling. This is due to
development of the contact mechanisms- i.e. linear or nonlinear- in normal and tangential directions of
their surfaces. In this paper a method for multiple nonlinearity detection and identification is proposed.
The method is applied to characterize the state of the contact mechanisms in normal and tangential

directions of a nonlinear beam subjected to a frictional contact support.
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1. Introduction

In modeling mechanical structures there are usually elements such as joints or boundary conditions
which demand more efforts for precise representation. In fact the behavior of these elements depends

upon the amplitude of the external forces applied to the structure. Usually their behavior is linear under
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low level excitation forces and under high level excitation forces nonlinearity arises leading to nonlinear
dynamic response of the structure. The other feature of these elements is that the nonlinear
mechanisms can develop both in normal and tangential directions of their contact interface. Therefore,
in modeling stage, one faces a problem with multiple unknown elements which needs to be

characterized.

The first step in modeling these elements is to decide if under certain excitation amplitude a linear or
nonlinear model should be used. This can be done by employing nonlinearity detection methods. A

comprehensive literature survey in this regard is done in the remaining of this section. The aim of this
paper is to represent a method which can be used for multiple nonlinearity detection and parameter

identification in structural dynamics.

Nonlinearity detection has been considered by many researchers in the past. Nonlinearity detection by
using Hilbert transform is described in [1]. In [2] the complex stiffness method is used for detection and
identification of the nonlinearity in SDOF systems. [3] and [4] uses the concept of nonlinear normal
modes for nonlinearity detection and characterization. The reciprocal modal vectors have been
suggested in [5]. The backbone (skeleton) curve [6] and more recently principal component analysis
(PCA) [7] are also used for nonlinear behavior detection. The describing functions method has been used

for nonlinearity detection and identification in [8, 9].

In this paper a multiple nonlinearity detection method is proposed. The method uses a number of
measured frequency response functions (FRFs) of the nonlinear system and the FRF matrix of a
reference linear system and identifies the state of the behavior of the unknown elements, i.e linear or
nonlinear, by applying Sherman-Morison formula. The number of measured FRFs must be at least equal
to the unknown elements. The advantage of this method is that the FRF measurement at the location of
unknown elements is not needed. The accuracy of the proposed method is validated by using simulated
data from a 2DOF nonlinear system and experimental data from a clamped beam subjected to a
frictional boundary condition. The contact mechanisms in normal and tangential directions of the

frictional interface are characterized. Next section considers description of the proposed method.



2. The proposed method

Consider a MDOF vibratory system consisting of r grounded unknown elements as is shown in Fig. (1-a).
The behavior of these unknown elements may be linear or nonlinear. In this paper a method is proposed
for detecting the state of the behavior of the unknown elements, i.e. linear or nonlinear. Since the
proposed method is based on the frequency response functions (FRFs), it is convenient to approximate
the nonlinear system with an equivalent linear system. Therefore under harmonic excitation condition
the equivalent linear system presented in Fig. (1-b) can be replaced with the nonlinear system at each
excitation frequency [8, 9]. By using the equivalent linear system, the FRFs of the nonlinear system can
be obtained as is described in the remaining of this section. The aim of this paper is to propose a
method which can be used for obtaining the equivalent linear stiffness coefficients k; i=1,2,...,r, by using

the measured responses of the nonlinear system. The method is described in the following.
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Figure 1- the nonlinear MDOF system (a) and its equivalent linear representative

The equation governing the motion of the system shown in Fig. (1-a) can be expressed in the matrix

form as,

{5+ [CH{} + K%} +{N(x, %)} ={ [} (1)

where M, C and K are respectively mass, viscous damping and stiffness matrix of the system. {f} and {N}

respectively represent the external forcing vector and the vector of internal nonlinear forces containing



the restoring force equation of the nonlinear elements. By considering harmonic excitation and

assuming harmonic response at the same frequency, i.e.

{f}={Fe”,  {x}={X}e" (2-3)
one may cast the vector of the nonlinear forces {N} in the matrix form as [10, 11],

{N(x, )} =[AX, )l X} e’ (4)

In Eqg. (4) A is a matrix containing the describing function representation of the unknown elements. A

can be expressed according to Fig. (1-b) as,
[A]=2 /K] (5)
i=1

where Ki, i=12,..,r isaunit rank matrix and the elements of its ¢, row can be defined as,

[Ki]a,-,/i :lgi(Xal’w)é‘a,v/} (6)

where § is the kronecker delta. It should be noted that i unknown grounded element is attached to ¢,
DOF. Therefore the equivalent linear stiffness l?l is a function of the response amplitude of ¢, DOF, i.e.

X, , at excitation frequency @.

By substituting equations (2-4) into equation (1) the FRF matrix of the system shown in Fig. (1-a) can be

derived as,

[H(X, 0)] =[Z(@)]" = (Z(0)]+[AX, )] (7)

where, Z(w) is the dynamic stiffness matrix of the reference linear system,

[Z()]=H(@)]" = [K]-&*[M]+ jo[C]. (8)

Equation (7) relates the FRF matrix of the nonlinear system to the FRF matrix of the reference linear

system. In order to find the relationship between a measured nonlinear FRF, i.e. hpq , the equivalent



linear stiffness coefficients k,, i=12,..., 7 and the elements of the FRF matrix of the reference linear

system the Sherman-Morisson formula [12] as is described in the following can be used.

First let consider that A is a unite rank matrix- being referred to in the following as A'- and the

/th

elements of its " row can be defined as,

[N] ,=AS), (9)

By using equation (7) and the Sherman-Morisson formula [12] one can obtain,
— 1 .
[H]=/H]- @[H][A JM] (10)

where g =t [A'J/H].

After some algebraic manipulations and matrix operations and by using the advantage of A" being a

unit-rank matrix, the following equation is obtained,

_ hyh
h,=h, — AL (11)
T Ay

Equation (11) is used in the following to cast the relationship between a measured nonlinear FRF, the
equivalent linear stiffness coefficients E, i=12,...,r and the elements of the FRF matrix of the

reference linear system.

In order to use equation (11), first equation (7) is re-written in the following form,

[H(X, o)1= (Z, ()] +[K, (X))’ (12)
where,
[Z,]=12]+ 3 [K ] (13)

In equation (12) K, is a unit rank matrix (equation (6)). By using equations (11) and (12) one can obtain,



_ _ (h,, ),(h,.,),
h =(h —f P A (14)
m = O "I+k,(h,, )

where (h__), corresponds to [HJ:[ZJI- From equation (13) we have,

M,]=[Z,]" =(Z,]+[K,_])" (15)

where KH is a unite rank matrix according to equation (6) and,

(Z,]=12]+ 3 [K}] (16)

By using equations (11) and (15) the following equation is obtained,

= (h,, ):(h, )
h =(h Py LIS AN (27)
( pq)I ( pq)z ! 1+ kr—] (ha,.,,a,.,,)z

(h__), is obtained from /H,/=/Z,]". It is worth mentioning that equation (17) makes it possible to

calculate (#,, ),, (h, ), and (h,, ), to be substituted into equation (14). The same procedure as in

equations (15-17) has to be followed for each equivalent linear stiffness. By repeating n times this

procedure one may arrive to equation (18),

- (h}?a,‘,")nJr] (harinq) n+l

h.),=(h —k - (18)
( pq)n ( pq)n+1 r—n 1+k"_" (harinar_n)'”]
By using equation (18) finally we have,

~(h,),(hy ),
h =(h S, PR A7 (19)
()2 = il I+ky(h,,,,),

- h 2 h“/

(hpg) 1 =hyy =k #ha; (20)

In equation (20), hyyr hyo s h and h,, are obtained from the reference linear system. By back-

pey’ Cag
substitution from equation (20) to equation (17) and then equation (14) one can arrives to a nonlinear

equation of the following form,



h,,(@)-h, (o) =g({d}.{h(w)}) (21)

In equation (21) {d} = [k,, k,,..., k,J" is the vector of the unknown equivalent stiffness coefficients,
{ht=[h,, h, h,..]J is avector composed of the elements of the FRF matrix of the reference linear

system and g is a nonlinear function. It is worth mentioning that equation (21) is formed at each
excitation frequency and contains r unknown elements. Therefore at least r measured FRFs of the
nonlinear system is needed to calculate the unknowns by solving equation (21) numerically. The
equivalent linear stiffness can be used to detect whether the behavior of the unknown elements is linear

or nonlinear. In Next section the proposed method is verified by using a numerical example.

3. Numerical example

A 2DOF system as is shown in figure (2) is considered,
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Figure 2- Two DOF system, m, =1, m, =2, k=100

In equation (22) the governing equation of the dynamic response of the 2DOF system is presented. The

system is considered to be excited using a harmonic force.

1 0)(%@ .\ 2 —I[x) . N, () 08 0 (22)
0 2|50 |-1 2||x0)]| |(N,@ | sin(ar)

where,

N,(t) ==k, x,(t) +c, | X,(t)|%,(), N,(t)=—k,x,(t)' + 1 sgn(x,(t)) (23-24)



By solving equations (22) numerically for k,, =500, k,, =750, ¢, =1 and u = 0.1 at each excitation

frequency w the steady state response is obtained. Having the steady state response and the excitation
force signals and transferring them into frequency domain by using the Fourier transform, the FRFs are

obtained as,

X, (@)

e’V (25)
F, (o)

(@) =

where X, and F, are respectively the amplitude of the steady state response and excitation force at
frequency .  is the phase difference between excitation force and structural response signals. The
frequency response functions as depicted in figure (3). In order to construct the equivalent stiffness

coefficient for N,(¢) and N,(t) the method described in previous section is employed.
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Figure 3- The FRFs of the nonlinear system (solid ) and the reference linear system (dashed)

By following the procedure described in previous section one can obtain,

_ — (h,,),(h
hpq = (hpq)l - kz ( ﬂzl( Zq)l (26)
I+ kz(hZZ)I
_ hh
(hy,), = h,, —k,—"= (27)

"1+ kyh



Computing (h,,),, (hzq)land (h,,), by using equation (27) and substituting them along with (h,,),into

equation (26) the following equation is formed,

ho—h = _l€1 hplhlq _ [hp2(1+ lgz }91)_ lglhplhm [th(1+ lgz }91)_ ]€Ih21hlq (28)
rq rq 1+ ]; }9 ] _ _
e (k + hzzj(l + k/ }91)_ k1h21h12
2

Equation (28) relates the measured nonlinear FRF to the FRFs of the reference linear system and the
equivalent linear stiffness coefficients IEI and l;z . This is an equation with two unknowns, i.e. IEJ and l;z.
Therefore having measured two nonlinear FRFs the unknowns can be identified at each excitation
frequency. Since excitation is applied on m, therefore in equation (28) g =2. By taking p=17 and p=2
and using the FRF matrix of reference linear system equation (28) results in two nonlinear equations. By
solving these equations numerically E] and EZ are obtained at each frequency. The nonlinear FRFs to be
used in equation (28) are /,, and h,, which are shown in Figure (3). The FRF matrix of the reference

linear system is obtained from,

M(w)] = (K]- o’ M)’ (29)

Figure (4) shows the calculated equivalent stiffness coefficients lgl and l;z,
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Figure 4- Equivalent stiffness coefficients, calculated (circles) and fitted (solid lines)



Since the imaginary and real parts of the equivalent linear stiffness coefficients shown in figure (4)
changes with the amplitude of the system response, this indicates the presence of the nonlinearity in
the system. By employing the describing functions concept [13] the equivalent linear stiffness of

nonlinear elements described by equations (23) and (24) are obtained as,

F-Sk xS xo,  Ee-Skoxie it (30-31)

4 3 4 -

where X, and X, are the response amplitude of m, and m, at excitation frequency . By fitting
equations (30) and (31) on the results presented in figure (4) the nonlinear parameters, i.e. k,,, k,,, c,

nl’

and u, can be identified. In Table (1) the exact and identified parameters are compared.

Table 1- Comparison of the exact and identified parameters

an an Cn ILI
Exact 500 750 1.0 0.1
Identified 514.667 743.113 1.009 0.103
Error (%) 2.9 0.9 0.9 3.0

The results presented in Table (1) as well as the results shown in figure (4) indicate the accuracy of the

proposed method in this paper. The method is applied to experimental results in next section.

4. Experimental validation

Nonlinearity in a contact interface can arise both in normal and tangential directions depending on the
amplitude of the excitation forces [14, 15]. Usually under low level excitation force amplitudes contact
interfaces behave linearly. By increasing the excitation amplitude, nonlinear mechanisms develop
causing nonlinearity in the dynamic response of the structure. Detecting whether the behavior of the
contact interface is linear or nonlinear is helpful in proposing proper models for the dynamics of the
contact interface. In this section nonlinearity detection and identification in normal and tangential

directions of a frictionally supported beam is considered.



4.1. Test set-up

Figure (5) shows the experimental test rig which consists of a clamped beam. The other end of the beam

is subjected to a frictional contact support (point O). A constant normal force

(=150 N) provided by mass blocks is applied to the contact interface. The linear or nonlinear contact

mechanisms may occur respectively in tangential and normal directions of the contact support if the
amplitude of the excitation forces is sufficient to excite them. The aim of this section is to detect the
state of the behavior of the mechanisms at the contact support- i.e. linear or nonlinear- and to identify

there parameters by using the method described in previous section.

Figure 5- Experimental test set-up

The beam is excited by means of an electromagnetic shaker at point A and its response is measured at
points A, B and C. First, low level random excitation is used and the FRFs are measured. The level of
random excitation is tuned such that it makes sure that the response of the structure is linear. The linear
FRFs are used later in this section and the reference linear system is constructed. Figure (6) shows two

linear FRFs.
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Figure 6-Comparison of the experimental FRFs (solid lines) and the FRFs obtained from reference linear

system (circles)

Next, different sine sweep excitations at different amplitudes and with frequency ranges around the first
natural frequency of the structure are applied to the structure. It is expected that by increasing the
excitation amplitude level the nonlinear mechanisms develop at the contact interface. Figure (7) shows

the measured FRFs by sine sweep excitation method,
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Figure 7- Left: Direct FRFs obtained by sine sweep (solid) and random (dashed) excitations, right: force

amplitudes used in sine sweep excitation

The FRFs shown in Figure (7) indicate presence of nonlinearity in the system since there peak amplitude

and frequency change as the excitation amplitude is increased. The decrease of the peak amplitudes and



resonant frequencies indicate respectively nonlinearity in stiffness and damping characteristics of the
contact interface. It is not obvious from FRFs in figure (7) that at each excitation case which nonlinear
mechanism- i.e. in normal or tangential direction- develops at the contact interface. Detection of the

state of the contact mechanisms is done by using the method proposed in this paper as is described in

the following.

4.2. Reference linear system

In order to employ the method described in previous sections, a reference linear system is needed. The
reference linear system can be constructed by using the measured linear FRFs shown in Figure (6). A
finite element (FE) model is constructed for the beam structure by using 2D Euler-Bernoulli beam
elements. The effects of contact mechanisms in normal and tangential directions are considered in the

FE model by lateral and torsional springs as is depicted in figure (8a).

(a)
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Figure 8- The reference linear system (a) and the equivalent linear system (b)

In normal and tangential directions the behavior of the contact interface may be linear or nonlinear. In
normal direction two surfaces may be always in contact or experience separation. At low level excitation
and when the contact point is compressed against the underlying steel block, elastic deformations occur
in contact interface. At this condition the behavior of the contact interface in normal direction is linear.
If the amplitude of the applied loads is increased, microscopic impacts develop between contacting
surfaces and absorb a small amount of energy. The main feature of this micro-vibro-impact mechanism
is dissipating energy in a nonlinear fashion. Therefore the micro-vibro-impact is characterized by linear
stiffness but nonlinear damping mechanisms. When the amplitude of the applied loads is further
increased such that the contacting surfaces completely separate from each other and come to contact

repeatedly, the macro-vibro-impact happens. The main feature of macro-vibro-impact is transferring



energy to higher frequencies than those excite the impact mechanism [15]. Leaking energy to higher
frequencies prevent defining a frequency response function. Therefore the method proposed in this
paper which is based on frequency response functions can not be used to identify this mechanism. Time
domain approaches, e.g. force-state mapping method, are more suitable for identification of macro-

vibro-impacts [16].

When the contact point moves in opposite direction, the stiffness of the flexible wire used to suspend
the mass blocks (see figure 5) plays the role of the stiffness in the normal direction. Therefore the
stiffness of the contact point in normal direction is bilinear. A schematic of the normal contact force up
to the macro-vibro-impact mechanism is depicted in figure (9a). A system with bilinear stiffness is
inherently nonlinear; for the contact interface used in this paper the stiffness changes at zero
penetration. Such a nonlinear system shows homogeneity in frequency domain [17]. Therefore the
bilinear stiffness can be approximated by an equivalent linear stiffness for analysis in frequency domain.
The linear behavior of the contact interface in normal direction is modeled by using a lateral spring of

constant &, in figure (8a).

In tangential direction the contact interface experiences three different regimes- stick, partial slip and
gross slip- depending on the amplitude of the external force. At low amplitude forces the contact
interface is in stick regime and behaves linearly. When the amplitude of the external force is increased,
small regions in the contact interface start to slip (i.e. partial slip phase) leading to decreasing the
stiffness of the contact interface in tangential direction. By further increasing the amplitude of the
external force, bigger slip regions develop in the contact interface. Finally, the whole contact interface
starts to slip and the gross slip occurs. The behavior of the contact interface in partial (or micro) and
gross (or macro) slip is nonlinear. A schematic of the tangential contact force up to the macro-slip
mechanism is depicted in figure (9b). The bending effect of the tangential contact force R(t) in stick
phase is modeled as a torsional spring in the reference linear system shown in figure (8a). In the
remaining of this paper the state of the contact interface mechanisms in normal and tangential

directions is identified.



In figure (9c) a schematic of normal and tangential contact forces is shown. The surfaces are in contact
when N(t) is less than the sum of P and the internal beam shear force and experience separation
otherwise. N(t) is the normal contact force and P is the applied constant force. A(t), V(t) and M(t) are

respectively internal axial force, shear force and bending moment of the beam.

N(t)

Surface penetration

(b)

R()

Surface sliding

Figure 9- Schematic of the normal contact force (a) and tangential contact force (b); Normal and

tangential contact forces acting at the contact interface (c).

In the FE model shown in Figure (8a), L=600 mm as length, E=211 GPa as module of elasticity,
p=7860 Kg/m’ as mass density and b=40 mm and h=5 mm as cross sectional dimensions of the beam
are used. The stiffness coefficients of the lateral and torsional springs are identified such that the
reference linear system generates the linear FRFs (Figure 6). Parameter identification is done by using
eigen-frequency sensitivity method [18]. In the identification procedure three first natural frequencies
are used. It is worth mentioning that a viscous damping matrix proportional to stiffness matrix is

considered for the reference linear system, i.e. /[C/=1x107/K]. The identified values for lateral and

torsional spring coefficients are k,, =1x10" N /m and k, =152 Nm/rad .

Due to the location of the contact interface in the structure the natural frequencies are much more

sensitive to the tangential contact stiffness &, than the normal contact stiffness k. For example the

ratio of the sensitivity with respect to k, to the sensitivity with respect to &, for the first natural

frequency is 65. This ratio for the second and third natural frequencies is 70 and 1.7, respectively. This



means that mainly the third natural frequency controls & in the identification procedure. Therefore

k, =1x10" N /m is not the optimum value which controls the response of the structure around the

first mode. This is an initial value which will be modified later in this paper when the response of the

structure around the first mode and at different excitation amplitudes is considered.

The reference linear system is used in next section and the state of the contact mechanisms in normal

and tangential directions are characterized.

4.3. Nonlinearity detection and identification

In order to detect the state of the contact mechanisms in normal and tangential directions, two complex

springs, i.e. k_ and 1;9 , are added to the reference linear system parallel to grounded springs &, and

k, (see figure 8b). EW and l?e are considered as the equivalent linear models- or describing functions-
for the contact mechanisms in normal and tangential directions, respectively. The values of l;w and 1;9
can be identified at different excitation amplitudes and frequencies by employing the method described
in previous section and using the reference linear system shown in figure (8a). The real part of l?w is
shown in Figure (10). Its imaginary part is found zero. The real and imaginary parts of the identified EH

are presented in figures (11) and (12).
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Figure 10- Real part of lgw at different excitation amplitudes
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Figure 12- Imag. part of /?5 at different excitation amplitudes, experiments (dots) and fitted (lines)

The abscissa in figures (10-12) are respectively the lateral and rotational movements of the beam at the
frictional contact support- i.e point O- and is obtained by using the reference linear system, the

identified equivalent linear models and the amplitude of the applied forces shown in figure (7).

Figure (10) shows that the identified values for &, vary from -9.55 to -9.65. Since the sensitivity of the
first mode with respect to IEW is low, it is reasonable to consider l;w to be constant in this range.

Therefore from the results presented in figure (10) it can be concluded that the contact mechanism in



the normal direction is linear since a constant real value for l;w is obtained at all excitation amplitudes.
The mean value of identified k,is k, =—9.6x10° N/m which is considered as the constant value for
the identified normal contact stiffness. As it was stated in previous section the normal contact stiffness
obtained by using the natural frequencies, i.e. k, = 1x10” N /m , is not the optimum value for the first
mode and needs to be modified. The negative value obtained for IEW in this section indicates that &

must be decreased. Therefore the optimum value for normal contact stiffness is obtained as

k,=1x10"—9.6x10° =4x10° N/m. This shows that a linear stiffness model of the form k,w, (¢)

governs the contact interface in normal direction; where w, () is the lateral movement of the contact

point. It is worth mentioning that even though %, is small and different from &, it can regenerate the

w?
natural frequencies with an acceptable accuracy. In Table 2 the first and second natural frequencies are

compared for different values of &,

Table 2- comparison of the first and second natural frequencies with experimental results

(@k, =152 Nm/rad)

First mode Second mode
Experiment 52.85 164.10
k. =1x10" N/m 52.75 164.09
Error (%) -0.18 0.0
k =4x]0> N/m 51.78 153.5
Error (%) -2.02 -6.45

The contact stiffness in normal direction is calculated in above equal to %, = 4x10° N/m.The
maximum displacement in normal direction based on figure 10 is about X, = 0.5um . Therefore the
maximum normal contact force is approximately obtainedas N, =~k X, =0.2 N.Itisworth

mentioning that the contribution of the damping mechanism in normal contact force is less than the
stiffness mechanism. The maximum normal contact force is much less than the constant applied normal
force P. Therefore the contact interface does not experience opening-closure and the macro-vibro-

impact mechanism does not happen.



The results presented in figures (11) and (12) indicate that the contact mechanism in tangential
direction is nonlinear since its equivalent linear model is a function of response amplitude and
frequency. The equivalent stiffness, i.e real(@) , decreases while the equivalent damping, i.e imag(l%) ,
increases as the response amplitude of the contact point is increased. It is found that the following

stiffness and damping models govern the dynamics of the contact interface in tangential direction,

S(t) = a. tanh(B,0, (1) + % 7,

6,(1)| sgn(6,()) (32)

D(t) = (ja +§ﬂd

Ho(t)‘-'-yd

6, (r)) sgnld, 1)) (33)

6 (t) and 49'0 () in equations (32) and (33) are respectively the rotational movement and velocity of the

contact point. In equation (32) the softening effect of the contact interfaces is approximated by using a
tanh-type function [19]. Equation (33) is the friction model proposed by Anderson and Ferri [20]. By
considering that the response is harmonic under harmonic excitation condition and employing the
concept of describing functions [13], the following equivalent linear models are obtained for equations

(32) and (33) [19],

Sg(Xg,a))=;(§; (—1+\/(ﬂSX9)2+1)+ysw (34)
De(XH’w):j[;j;Jrﬂd +7/de (35)

where X, is the amplitude of 0 (z) . By fitting functions defined in equations (34) and (35) on the

experimental results presented in figures (11) and (12) the model parameters are identified (Table (3)).
The equivalent stiffness and damping models regenerated by identified parameters are compared with
experimental results in figures (11) and (12). The results presented in figure (11) and (12) show that the
nonlinear stiffness and damping models presented in equations (32) and (33) effectively model the

dynamics of the contact interface in tangential direction.

Table 3-stiffness and damping model parameters at different load cases



Load case a.v IBS 73 ad X]0_6 IBd yd
53.67 15.92 -2.43 0.0 0.0 0.0

a

b 92.96 15.95 -4.40 1.16 -766.85 2.37
c 91.8 15.97 -4.36 0.51 -959.83 2.98
d 102.21 15.97 -4.89 -3.14 -1253.5 3.90
e 96.60 14.45 -4.17 -6.64 -874.10 2.76
f 89.39 14.41 -3.86 -15.00 -675.88 2.17

5. Conclusion

In this paper the dominant mechanisms in normal and tangential directions of a contact interface was
characterized. Both nonlinear detection and parameter identification were considered. To this end, a
method was proposed in this paper which can be used to detect the state- i.e. linear or nonlinear- of the
behavior of multiple unknown elements in a nonlinear system. The input to the method is the measured
nonlinear FRFs and the FRF matrix of a reference linear system. The proposed method was evaluated

using numerical and experimental results.
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Highlight

A new approach for characterization of multiple unknown elements in nonlinear systems is developed.
The method uses measured nonlinear FRFs and a reference linear system. The method is applied to
numerical and experimental case studies.



