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a b s t r a c t

Friction in contact interfaces of assembled structures is the prime source of nonlinearity

and energy dissipation. Determination of the dissipated energy in an assembled

structure requires accurate modeling of joint interfaces in stick, micro-slip and

macro-slip states. The present paper proposes an analytical model to evaluate frictional

energy loss in surface-to-surface contacts. The goal is to develop a continuous contact

model capable of predicting the dynamics of friction interface and dissipation energy

due to partial slips. To achieve this goal, the governing equations of a frictional contact

interface are derived for two distinct contact states of stick and partial slip. A solution

procedure to determine stick–slip transition under single-harmonic excitations is

derived. The analytical model is verified using experimental vibration test responses

performed on a free-frictionally supported beam under lateral loading. The theoretical

and experimental responses are compared and the results show good agreements

between the two sets of responses.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

There have been extensive investigations on the friction damping effect in the dynamics of build-up structures in the

past [1–4]. Friction is the tangential reaction force generated in the interface of the two contacting surfaces while an

external force is applied on the assembly. Dry friction is the primary source of nonlinear behavior in structural contact

interfaces. It acts as a mechanism to dissipate energy due to relative tangential displacements in the interfaces and may

become responsible for 90 percent of the total structure damping [5]. The prediction of energy dissipation due to micro-

slip or partial-slip is still an important issue in the structural designs and the subject of many studies. The term ‘‘micro-

slip’’ is used where in a small fraction of the entire contact interface the generated shear force reaches a threshold that the

contact pressure is insufficient to prevent slip. In the analysis of the structures embedding friction interfaces, it is of

interest to propose physical-based accurate micro-slip model to determine the frictional energy loss. Two general types of

models are widely used in this regard namely, the lumped parameter models and continuum approaches [6]. The lumped

parameter models are in fact different configurations of the bilinear macro-slip element introduced by Iwan [7] and are

further developed during the recent years [8–10]. The latter models utilize continuum approaches in which the regions of

stick and slip in the contact interface are captured by applying a quasi-static load condition. Rice and Ruina [11] have

developed a general rate and state dependent friction law which was related to time-varying contact conditions and

relative velocity of the sliding points. This law is applied particularly in steady-sliding stability problems by defining

critical stiffness of system. Oden and Martins [12] used a continuum mechanics-motivated approach and derived power
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law expressions for normal and tangential stresses in the contact interface. They used the hyperbolic arctangent function

to approximate the friction force smoothing at relative zero velocity so that no sticking state is observed in their model.

Menq et al. [13] proposed a partial slip model in which the friction damper is modeled as an elastic rod in contact with an

elasto-plastic shear layer under static axial load. The structural response was investigated in full ranges of interface

conditions including stick, partial slip and macro-slip. Csaba [14] proposed a micro-slip friction model with a parabolic

normal contact load distribution assuming the shear layer has no elastic deformation in stick state and defined slip length

based on the model developed in [13]. A single blade with a grounded linear friction damper was analyzed using this

model in the frequency domain. The predicted responses when only macro-slip was included in the model were much

higher compared to when both micro- and macro-slips were accounted in the model. Cigeroglu et al. [15] further

developed the one-dimensional micro-slip model of Menq et al. [13] by including the inertia of the system, and assuming a

non-uniform normal contact load distribution. The structure is analyzed for uniform, convex and concave contact normal

load distributions and the results are compared with a point contact model.

The present paper extends the rod model with axial motion on frictional support of Refs. [13–15] to a beam model in

lateral motion with partial slip on a similar support. The paper proposes a new continuous micro-slip model for a bolted

beam in bending which is capable of evaluating the dissipated energy in contact interface via stick–slip transition criteria.

For this purpose the contact interface is regarded as a virtual elasto-plastic shear layer between the interface surfaces

which takes different states of stiction, partial or micro-slip and macro-slip in the loading cycles according to the shear and

normal forces acting in the interface. The systems of governing equations of frictionally supported beam are derived for

distinct states of stiction, micro-slip and macro-slip in shear layer by extended Hamilton’s principle. Solving the equations

of motion analytically for these cases, the structure shows a linear behavior in stiction and nonlinear behavior when

micro-slip initiates in the contact interface. The slip initiation and its propagation in the interface are determined using a

constraint indicating the transition of shear force from stick to slip state. An experiment is conducted on a test structure

and the performance of proposed model is investigated by comparing the predicted and measured hysteresis loops in

different excitation harmonics.

2. Governing equations of a beam on frictional support

The governing equations for a frictionally supported beam in bending, as shown in Fig. 1, are derived in this section. The

displacement field of the Euler beam is assumed in the form of

Uðx,zÞ ¼ uðxÞþzw0ðxÞ,

Wðx,zÞ ¼wðxÞ, (1)

in which x and z are Cartesian coordinates and the origin of the coordinate system is on the neutral axis. The total axial

displacement of the beam U(x,z) consists of two parts, one caused by displacement of the neutral axis of the beam u(x) and

the other by rotation of the beam, i.e. w0(x). The lateral displacement is denoted by w(x). The components of strain and

stress fields can be found as

exx ¼ u0þzw00
, exz ¼ 0, ezz ¼ 0,

sxx ¼ Eexx, sxz ¼ 0, szz ¼ 0:

(2)

Fig. 1. Free-frictionally supported beam: (i) general view, (ii) the contact interface in stick, and (iii) micro-slip state.
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The followings sought derivation of the equations of the motion by means of the extended Hamilton’s principle. The

extended Hamilton’s principle can be expressed in the form
Z t2

t1

ðDKÿDPþDWncÞ dt¼ 0 (3)

The notations d and D denote ‘‘Dirac delta function’’ and ‘‘variation symbol’’ respectively. The kinetic energy of the

structure is expressed as

K ¼
1

2

Z

V

rð _U
2
þ _w2

Þ dVþ
1

2
m0 _u

L1
2

� �2

þ _w
L1
2

� �2
 !

, (4)

wherem0 is the effective mass of the bolt that is located at x¼L1/2 and r is the beammass density. The strain energy of the

structure is given by

P¼
1

2

Z
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X

3

i,j ¼ 1

sijeij dVþ
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0

knw
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1
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k0u

L1
2

� �2

, (5)

where kn is the normal stiffness of the support and k0 is the tangential stiffness at x¼L1/2 due to the bolt lateral flexibility.

The work done by tangential contact force is expressed by

Wnc ¼

Z L1

0

f hU dx, (6)

in which fh is the shear force acting on the beam. Substituting Eqs. (1) and (2) into Eqs. (4)–(6) and introducing the results

into the extended Hamilton’s principle of Eq. (3) one obtains

rAþm0d xÿ L1
2

� �� �

€wþEIw0000ÿ rIþ J0d xÿ L1
2

� �� �

€w
00

þknwþ h
2 f hðx,tÞ ¼ 0,

rAþm0d xÿ
L1
2

� �� �

€uÿEAu
00

þk0d xÿ
L1
2

� �

uþ f hðx,tÞ ¼ 0, (7)

where A, I, h and b are respectively cross-sectional area, cross-sectional moment of inertia, height and width of the beam

and J0 is the bolt mass moment of inertia. E is Young’s modulus. Superscripts ()0 and ðÞ� denote differentiation with respect

to x and t
,
respectively.

Eq. (7) can be further simplified when fh is functionally known. In order to define the contact force fh, three different

conditions are considered describing the state of the contact interface, i.e. the elastic stick state, micro-slip and the macro-

slip conditions.

In stiction the shear layer deforms elastically and none of the contacting bristles yields, i.e. the tangential springs

behave linearly. The deformation of the shear layer is proportional to tangential contact force and can be defined using

tangential shear stiffness kt as

f h ¼ ktUðHðxÞÿHðxÿL1ÞÞ, (8)

where H(x) is Heaviside function.

Once the shear force at the entire contact interface reaches its slip limit, all the bristles yield and the contact shear force

is obtained by using Coulomb friction law as

f h ¼ mqeff ðxÞðHðxÞÿHðxÿL1ÞÞ, (9)

where qeff is the effective normal force in the contact interface.

The interface shear force in micro-slip state can be defined using a combination of stiction and macro-slip shear forces

in support. In this case a part of support, i.e. 0oxoa, is in stiction and the remaining part is in macro-slip, and the support

shear force is defined as

f h ¼ ktUðHðxÞÿHðxÿaÞÞþsgnð _UÞmqeff ðxÞðHðxÞÿHðxÿL1ÞÞ: (10)

Next the dynamic analysis of the beam is considered while the support is in micro-slip.

3. Beam dynamics with micro-slip in support

The structure shown in Fig. 1 is analyzed in the state of stick. The deformation in the interface layer is assumed to be

elastic and the structure behaves linearly as presented in section (ii) of this figure. In order to determine stick–slip

transition in the contact interface, the elastic contact force between the beam and the support is compared with friction

force along the interface. As long as the contact elastic force is less than the frictional force, the contact interface is in the

stick regime. The slip happens when the contact elastic force reaches the frictional force at any point of the interface.

In order to determine the beam dynamic behavior, one needs to specify the distribution of normal contact force in the

support. The effective static normal contact force is determined in the following section.
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3.1. Effective static normal force

The preload of the bolt causes a normal load distribution in the contact interface. The load distribution is a function of

beam flexural rigidity and the support normal stiffness. The effect of beam lateral inertial forces on the support section is

neglected and the governing equations of beam on support is defined as

EIw0000
s þknws ¼ FboltðxÞ, 0rxrL1,

EIw0000
s ¼ 0, L1rxrL, (11)

where Fbolt(x) is the preload of the bolt. These equations are subjected to the following boundary and compatibility

conditions:

w
00

ð0Þ ¼w
000

ð0Þ ¼w
00

ðLÞ ¼w
000

ðLÞ ¼ 0, (12a)

wsðL
ÿ
1 Þ ¼wsðL

þ
1 Þ, w0

sðL
ÿ
1 Þ ¼w0

sðL
þ
1 Þ, w00

sðL
ÿ
1 Þ ¼w00

sðL
þ
1 Þ, w0000

s ðL
ÿ
1 Þ ¼w0000

s ðL
þ
1 Þ: (12b)

In Eq. (12a) the boundary conditions are presented; the bending moments and shear forces at two ends of the beam are

zero. Eq. (12b) shows the compatibility requirements at x¼L1 where the lateral deflections, slopes, bending moments and

shear forces for the two beam sections are equal. Solving Eq. (11) leads to the deformed shape of beam on the support and

the normal contact force is obtained as a result

qeff ðxÞ ¼ knwsðxÞ: (13)

The obtained normal contact force is used to determine the support shear forces.

3.2. Determination of the contact shear forces

The equations of motion of the structure when the contact interface is in stick regime can be rewritten by dividing them

into two parts. The first part corresponds to the supported part, i.e. 0rxrL1, and the second corresponds to the over-

hanged portion, i.e. L1rxrL,
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EAu
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(14)

The boundary conditions and compatibility requirements of these two parts are defined as

w00ð0,yÞ ¼w000ð0,yÞ ¼w00ðL,yÞ ¼w000ðL,yÞ ¼ 0, and u0ð0,yÞ ¼ u0ðL,yÞ ¼ 0, (15a)
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,yÞ ¼ u
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ðL1
þ

,yÞ, where y¼ot:
(15b)

The boundary conditions are free–free as represented in Eqs. (15a). The compatibility requirements given in Eqs. (15b)

requires the solution of beam segments at x¼L1 produces continuous lateral deflections up to the third derivative, and

guarantees the continuity of axial deflections up to the first derivatives.

Solving differential equations presented in Eq. (14) together with boundary and compatibility conditions the axial and

lateral responses of the beam is obtained. The contact elastic force in the state of stick can be expressed as

Ftðx,yÞ ¼ ktðuðx,yÞÿ
h

2
w

0

ðx,yÞÞ: (16)

The total normal load depends not only on the preload but also on its dynamic displacement. In other words, the

effective normal load is a function of both static and dynamic response of the beam

F f ðxÞ ¼ mqeff ðxÞ,

qeff ðxÞ ¼ knðwsðxÞþwdðx,yÞÞ, (17)

where ws(x) is the beam static deflection due to preload and wd(x) is dynamic response of the beam. The contact interface

transition criteria between slip and sticking states is set by equating the contact shear force and the sliding friction force,

i.e.

kt uðxÞÿ
h

2
w

0

ðxÞ

� ��

�

�

�

�

�

�

�

¼ mðknðwsðxÞþwdðxÞÞÞ: (18)

Using this criterion the slip initiation location and hence the minimum force required to initiate slip in the contact

interface is determined.
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3.3. The structural response in partial slip

As the magnitude of the excitation force increases, the contact force in the shear layer exceeds the allowable value and

– depending on the distribution of the contact normal force – a slip region is formed in the interface. The location of the

first point undergoing slip depends on the axial and lateral responses of the beam and the distribution of the normal load.

In the following it is assumed that the slip initiates from the right side of the contact interface. Therefore, the contact

interface is divided into stick and slip regions as is shown in part (iii) of Fig. 1.

The governing equations of the structure is given by

EIw0000þ rIo2ÿkt
h2
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2d xÿ L1

2

� �� �
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2
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2
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EIw0000þrIo2w00þðknÿrAo2Þwÿ
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2 knðw

0
sþw0Þ ¼ 0, arxrL1,

EAu00þrAo2ÿmknðwsþwÞ ¼ 0, arxrL1,

EIw0000þrIo2w00ÿrAo2w¼ fdðxÿL2Þ, L1rxrL,

EAu00þrAo2u¼ 0, L1rxrL:

(19)

Eqs. (19) are subjected to the following boundary conditions and compatibility equations:

w
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ð0,yÞ ¼w
000

ð0,yÞ ¼w00ðL,yÞ ¼w000ðL,yÞ ¼ 0, and u0ð0,yÞ ¼ u0ðL,yÞ ¼ 0, (20a)
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(20b)

The boundary conditions are free–free as represented in Eqs. (20a). The compatibility requirements given in Eqs. (20b)

requires the solution of beam segments at x¼a and L1 produces continuous lateral deflections up to the third derivative,

and guarantees the continuity of axial deflections up to the first derivatives.

It is assumed that the solution of Eqs. (19) has the following form:

wðx,tÞ ¼wsðxÞþwdðxÞsinðyÞ,

uðx,tÞ ¼ usðxÞþudðxÞsinðyÞ: (21)

In Eq. (21) ‘s’ and ‘d’ refer to static and dynamic responses of the beam, respectively. In compatibility equations of (20b),

the length ‘a’ is an unknown parameter obtained using an extra constraint implying that the frictional forces at x¼a

calculated from Eqs. (19)–(21) on the stick side and the slipping side is equal. This constraint is defined as

9ktðuðaÞÿ
h

2
w

0

ðaÞÞ9¼ mknwðaÞ: (22)

Solving governing equations together with boundary and compatibility conditions and using the constraint (22), one

establishes the backbone curve by incrementally increasing the magnitude of the excitation force. It is worth noting that

increasing the amplitude of the harmonic force leads to a multi-region interface. To obtain a solution in such a case, the

governing equations as well as the solution procedure should be generalized in a similar fashion that mentioned for a two-

region contact interface. The force–displacement backbone curves for linear and nonlinear dynamic behavior of the beam

structure are determined and using the Masing rule theoretical hysteresis loops are generated. A typical static load–

displacement hysteresis loop obtained by employing the mentioned procedure is illustrated in Fig. 2.

4. Experimental case study

The experimental set-up consists of a single steel beam bolted to a frictional support at one end as shown in Fig. 3.

The beam dimensions are L¼300 mm (length), b¼30 mm (width) and h¼3 mm (thickness). The frictionally supported

beam section has a length of L1¼50 mm which bolted to the frictional support by means of a M18 bolt. The bolt has mass

of 52 g. The structure was excited by a concentrated external force applied by an electromagnetic mini-shaker through a

stinger. The excitation location was x¼130 mm away from the frictional end and the response of the beam was measured

at the same point. The bolt was fastened with a torque of 20.4 N m and it was ensured the preload remained constant

during the experiment.

Initially the structure was excited with a low-level pseudo-random force within frequency range of 0–400 Hz and the

first two natural frequencies of the linear structure were measured. Fig. 4 shows the corresponding FRF of the linear

structure indicating two bending modes at the frequencies of 35.40 Hz and 220.80 Hz.

Next the structure was excited using single harmonic forces at different excitation frequencies and the structural

responses in acceleration form were measured. The response contains the same harmonic as the excitation force and its

multiples due to nonlinear effects in the structure. This makes analytical integration possible to obtain the displacements

from measured accelerations. Considering the excitation frequency as o, a Fourier series of the following form was fitted
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to every measured acceleration signal:

€wðtÞ ¼
X

M

m ¼ 1

ðAm sinðmotÞþBm cosðmotÞÞ, (23)

Fig. 2. A typical static loading hysteresis loop.

Accelerometer

Force Transducer

M18

Frictional

Support

5cm

30cm

Shaker

13cm

Fig. 3. The test set-up.
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where the coefficients Am and Bm are obtained from data fitting. The displacement w(t) is obtained by integrating the

acceleration twice as

wðtÞ ¼ÿ
X

M

m ¼ 1

Am

ðmoÞ2
sinðmotÞþ

Bm

ðmoÞ2
cosðmotÞ

 !

, (24)

The hysteresis loops and resultant dissipated energy in the frictional support are obtained using the measured force

signals and the corresponding calculated displacement responses.

5. Validating the model predictions

Parameters of the analytical model introduced in Section 3 are known except for the normal and tangential stiffness

coefficients of the support, i.e. kn and kt respectively.

The beam lateral modes are sensitive to the support normal stiffness kn therefore this parameter is identified using the

first two measured modes of the structure. When kn is set to zero the beam boundary conditions are free–free and as it

approaches infinity shank part of the beam poses clamped–free boundary conditions.

A linear eigen-sensitivity identification procedure is employed and kn is identified by minimizing the difference

between measured lateral modes and the corresponding values predicted by the model. The first two bending modes of

the identified model are 35.25 Hz and 219.70 Hz which are very close to the measured natural frequencies of 35.40 Hz and

220.80 Hz.

The support tangential stiffness kt controls the elastic slope of the hysteresis loops. This parameter is tuned such that

the analytical model regenerates the elastic slope of the experimental hysteresis loops. The resulting stiffness coefficients

for the analytical model are kn¼1.7�109 N/m and kt¼5.8�108 N/m. The contact parameters are functions of interface

roughness, material and normal preload; as long as they are kept constant these parameters can be used to determine the

dynamic behavior even if structure is modified.

In order to evaluate the accuracy of the updated analytical model and applicability of the developed methodology in

predicting the beam response, the analytical and experimental hysteresis loops are compared in different frequencies

around the first resonant frequency. The selected excitation frequencies are shown in Fig. 5.

The theoretical hysteresis loops are obtained from the analytical updated model according to the procedure described

in Section 3. The analytical and experimental hysteresis loops as well as the acceleration auto-spectrums at specific

frequencies around the first natural frequency are shown in Figs. 6 and 7.

Fig. 6 indicates under single harmonic excitation the structural response contains higher harmonics which are

multiples of the excitation harmonic. This indicates nonlinear behavior of the beam which is due to micro-slips developing

at the contact interface. The emerging odd numbers of super-harmonics in the frequency content of the responses suggest

that a cubic stiffness nonlinear term exists in the dynamics of the bolted structure. Fig. 6a shows micro-slip is present in

the contact interface as only the third higher harmonics is excited. Fig. 6(b)–(d) show even and odd higher harmonics are

present in the response caused by the micro-slips and micro-slaps. The later effect is not included in the analytical model.

A good agreement between the predictions of the identified nonlinear model and the measured responses are achieved

as shown in Fig. 7. The enclosed area of hysteresis loops indicates the system dissipated energy in one motion cycle. The

dissipated energy depends on the length of support with partial slip and the distribution of the normal force at the contact

interface. The analytical model is capable of predicting the experimental observations with acceptable accuracy.
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Fig. 4. Frequency responses function of the linear structure.
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6. Conclusions

A micro-slip model for evaluation of the energy dissipation in flexural vibration of a bolted beam is presented. An

analytical approach is employed to determine the stick–slip transitions of a frictionally supported beam under harmonic

excitation. The contact interface parameters are identified using experimentally measured data such that the differences

between the model predictions and the experimental observations are minimized. The force–displacement backbone

curves for linear and nonlinear dynamic behavior of the beam structure are determined and using the Masing rule

theoretical hysteresis loops are generated. The obtained analytical model is capable of accurately regenerating the

hysteresis loops and corresponding dissipated energy of the contact interface.
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Fig. 5. Selected excitation frequencies around the first mode.

Fig. 6. The auto-spectrums of the measured acceleration responses (m/s2): 25 Hz (a), 31 Hz (b), 38 Hz (c) and 45 Hz (d).
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Fig. 7. Analytical (blue lines) and experimental (red dots) hysteresis loops: 25 Hz (a), 31 Hz (b), 38 Hz (c) and 45 Hz (d). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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